Debug 指南#
对齐精度#
在开发 slime 的过程中,经常会需要检查模型的精度是否正确,可以通过以下方式检查:
训练第一步
rollout 的生成是否是人话,如果不是,有以下 2 种可能:
参数没有正常加载。需要查看是否有 megatron 成功加载 ckpt 的日志;
更新参数有误。可以查看是不是所有的参数都做了转换和参数对应,或者参数名是不是根据并行做了转换(例如 pp_size > 1 时,第二个 stage 提供的参数的 layer id 是不是正确的)。一个比较彻底的方法是在对应模型的 sglang 实现的
load_weights中保存所有的参数,查看和加载的 ckpt 中是否一致;如果所有参数更新都正确,还出现问题,有可能是 sglang 里有一些特殊的 buffer 在 release 的时候被释放了;
如果是用 pretrain 模型进行的测试,可以换成同结构模型的 instruct 版本,查看这种乱码是不是 pretrain 模型特有的。
查看打印的 rollout stats 的
log_probs和ref_log_probs是否完全相等(即第一步 kl=0),且值较小如果不是完全相等的,一般是 transformer engine 中的某些 non-deterministic kernel 导致的,例如:
在某些版本的 te 里,megatron 需要
--attention-backend flash,来强制使用 flash attention,从而避免 CP 下 fused attention 的数值不稳定;
如果数值较大(例如 >1),一般有 2 种可能:
如果值非常大,应该是训练配置有问题;
如果值只是比 sft loss 的状态略大,例如 instruct 模型的 logprob 到了 0.8,有可能是数据不符合训练的 chat template,或者不符合冷启动的分布。
查看在推一训一(
num_steps_per_rollout == 1),kl 是否为 0,grad_norm 是否较小基本上就是一些 megatron / te 相关的 bug,例如:
moe 需要开启
--moe-permute-fusion。
训练第二步
对于训推一体,查看是否能正确加载第二步,是否会 OOM;
训练推理单独 debug#
slime 支持将训练部分和推理部分分开进行调试,从而实现:
在调优/debug 推理部分时,只用少量卡就可以启动任务;
在调优/debug 训练部分时,可以保证模型输入固定,去除 rollout 的随机性。
具体来说,目前 slime 提供了如下的参数来进行分离调试:
--debug-rollout-only开启后,slime 将不会加载 megatron,只初始化 sglang ,可以用这个方法来进行推理部分的调试。
--debug-train-only开启后,slime 将不会加载 sglang,只初始化 megatron ,可以用这个方法来进行训练部分的调试。
--save-debug-rollout-data /your/saved/debug/data_{rollout_id}.pt开启后,会保存每次 rollout 的结果,可以和
--debug-rollout-only配合使用。注意保存的方式为args.save_debug_rollout_data.format(rollout_id=rollout_id)。--load-debug-rollout-data /your/saved/debug/data_{rollout_id}.pt开启后,会从
args.load_debug_rollout_data.format(rollout_id=rollout_id)来加载数据,并且不会初始化 sglang(自动设置debug_train_only=True)。可以以这种方式来固定训练部分的输入,对训练部分进行调优,例如切换各种并行。