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Introduction

Convolutional Networks are a specialized kind of Feedforward
Neural Networks

Neuron Science: connectivity pattern between its neurons is
inspired by the organization of the animal visual cortex
Computer Science: matrix multiplication is replaced with
convolution
Optimization: still use the same objective function: maximum
likelihood or minimum square error and the same solving
algorithm: back-propagation.

convolution with different kernels
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Introduction
Convolutional Networks are a specialized kind of Feedforward
Neural Networks

CNN is also known as shift invariant or space invariant
artificial neural network (SIANN)
wide applications in image and video recognition,
recommendation systems, natural language processing, and
recently network/graph data

It might be hard to say who actually invented CNN
but, clearly, LeNet-5 is a pioneering 7-layer convolutional
neural network1

Yann LeCun is also viewed as the founder of convolutional nets
(CNN)
The Turing Triangle: Geoffrey Hinton, Yann LeCun, Yoshua
Bengio2,3

1LeCun, Yann; Lon Bottou; Yoshua Bengio; Patrick Haffner (1998).
Gradient-based learning applied to document recognition. Proceedings of the IEEE. 86
(11): 2278–2324.

2Deep Learning. Yann LeCun, Yoshua Bengio & Geoffrey Hinton. Nature 521,
436444 (28 May 2015)

3CHRONOLOGICAL LISTING OF A.M. TURING AWARD WINNERS
https://amturing.acm.org/byyear.cfm
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Why Convolutional Neural Networks

Example: CIFAR-10 classification— The CIFAR-10 dataset
consists of 60000 32x32 colour images in 10 classes, with
6000 images per class.

Scalability: In deep feedforward networks, each latent unit is
fully connected to all neurons in the previous layer and thus
cannot not scale well to higher resolution images, e.g., an
image of 200× 200× 3 would result in neurons that have
200 ∗ 200 ∗ 3 = 120, 000 weights each.

convolution with different kernels
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Why Convolutional Neural Networks

Example: CIFAR-10 classification— The CIFAR-10 dataset
consists of 60000 32x32 colour images in 10 classes, with
6000 images per class.

Scalability: In deep feedforward networks, each latent unit is
fully...
3D volumes of neurons: unlike a regular Neural Network, the
layers of a ConvNet have neurons arranged in 3 dimensions:
width, height, depth. In this way, every layer of a CNN
transforms the 3D input volume to the 3D output volume.

A regular 3-layer Neural Network vs. A Convolutional Neural Network
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What is Convolutional Neural Network?

convolutional layers, pooling layers, fully-connected layers.

Goal: approximate some map function f ∗ (like deep forward
networks)

– e.g., a classifier y = f ∗(x ; θ) to map an input x into a
category y

– and learns parameters θ = (W ′; b′) that result in the best
approximation.
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What is CNN: CIFAR-10 example

A simple CNN for CIFAR-10 classification could have the
architecture [INPUT→CONV→RELU→POOL→FC]:

INPUT is the raw pixel values of the image of
[32× 32× 3]−−−width:32, height:32, and three color
channels: R, G, B.
CONV layer uses convolution to compute the output of
“neurons”, with each unit computing a dot product between
their weights for a small region in the input volume. This
results in volume such as [32× 32× 12] if we decided to use
12 convolution kernels.
RELU layer applies an activation function, such as the
max(0, z). This leaves the size of volume unchanged
([32× 32× 12]).
POOL layer performs a subsampling operation along the
spatial dimensions (width, height), resulting in volume such as
[16× 16× 12].
FC (i.e. fully-connected) layer computes the class scores,
resulting volume of size [1× 1× 10].
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What is CNN

In summary:

A CNN architecture is in the simplest case a list of Layers that
transform the image volume into an output volume (e.g.
holding the class scores)

There are a few distinct types of Layers (e.g.
CONV/FC/RELU/POOL are by far the most popular)

Each Layer accepts an input 3D volume and transforms it to
an output 3D volume through a differentiable function

Each Layer may or may not have parameters (e.g. CONV/FC
do, RELU/POOL dont)

Each Layer may or may not have additional hyperparameters
(e.g. CONV/FC/POOL do, RELU doesnt)
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What is Convolution?

In mathematics, convolution is an operation on two functions
(f and g),

(f ∗ g)(t) =

∫ ∞
−∞

f (τ)g(t − τ)dτ

=

∫ ∞
−∞

f (t − τ)g(τ)dτ

(1)

For functions f and g defined on the set Z of integers, we can
define the discrete convolution of f and g

(f ∗ g)(n) =
∞∑

m=−∞
f [m]g [n −m]

=
∞∑
−∞

f [n −m]g [m]

(2)
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What is Convolution?

Suppose we are estimating the location with a GPS. f [n] is
the value from GPS, but possibly with noise.

To obtain a less noisy estimation, we can use recent values of
the GPS to smooth estimation with a weighting function
g [m], but of course recent value should have a higher weight

(f ∗ g)(n) =
∞∑

m=−∞
f [m]g [n −m] (3)
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What is Convolution?

In ML, the input usually forms a multi-dimensional structure. For
example, convolution is used to transform a 2D input I with a 2D
kernel K :

Z (i , j) = (I ∗ K )(i , j) =
∑
m

∑
n

I (m, n)K (i −m, j − n)

In ML, learning algorithm based on convolution with kernel flipping
will learn a kernel that is flipped relative to the kernel learned
without flipping.

So, many ML libraries implement cross-correlation but call it
convolution:

Z (i , j) = (I ∗ K )(i , j) =
∑
m

∑
n

I (i + m, j + n)K (m, n)
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2D Convolution
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Advantages of CNN

CNN leverages three important
ideas

Sparse connectivity: hidden
neurons only connected to small
regions in the input
Parameter sharing: the same
parameters are shared across all
spatial locations
Equivariance: i.e.,
f (g(x)) = g(f (x))
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Sparse connectivity vs. Full connection

view from below view from above

full connection obtained
with deep structure
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Edge detection by convolution

Figure 1: The image on the right was formed by taking each pixel in the original
image and subtracting the value of its neighboring pixel on the left. Both images are
280 pixels tall. The input image is 320 pixels wide while the output image is 319 pixels
wide. This transformation can be described by a convolution kernel containing two
elements, and requires 319× 280× 3 = 267, 960 floating point operations (two
multiplications and one addition per output pixel) to compute using convolution.

21 / 94



Efficiency of convolution

Input size: 320× 280

Kernel Size: 2× 1

Output Size: 319× 280
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Convolutional Layer

The convolutional layer is the core building block of a CNN that
does most of the computational heavy lifting.

Local Connectivity.

Each neuron in CNN only connects to a local region of the input
volume. The local region is called the receptive field of the neuron.
The extent of the connectivity along the depth axis is always equal
to the depth of the input volume.
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Convolutional Layer (cont.)

Example 1. Suppose that the input volume has size [32x32x3]. If
the receptive field (or the filter size) is 5x5, then each neuron in the
Conv Layer will have weights to a [5x5x3] region in the input
volume. Notice that the extent of the connectivity along the depth
axis must be 3, since this is the depth of the input volume.

Example 2. Similarly for the input [16x16x20] with the receptive
field size of 3x3, every neuron in the Conv Layer would now have a
total of 3*3*20 = 180 connections to the input volume. Again, the
connectivity is local in space (e.g. 3x3), but full along the input
depth (20).
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Spatial arrangement

In the convolution layer, three hyperparameters control the
size of the output volume: depth, stride and zero-padding:

the depth of the output volume is a hyperparameter: it
corresponds to the number of kernels we would like to use;
the stride is which we slide the kernel. When the stride is 1
then we move the kernels one grid at a time. When the stride
is 2 then the kernels jump 2 grids at a time. This will produce
smaller output volumes;
sometimes it will be convenient to pad the input volume with
zeros around the border. The nice feature of zero-padding is
that it will allow us to control the spatial size of the output
volumes (One special case is when enough zero-padding is
added to keep the size of the output equal to the size of the
input).
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Convolution

padding = 1
stride = 2
#kernel (filter)=
2
spatial extent =
3× 3
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Convolution
When working with images, we usually think of the input I
and output Z of convolution as being 3D tensors:

Z
(i)
j ,k =

∑
l ,m,n

I
(l)
j+m−1,k+n−1K

(i ,l)
m,n + b(i)

Z
(i)
j,k is the value of output unit within channel i at row j and

column k
kernel k is a 4D tensor with element K

(i,l)
m,n giving the

connection strength between an output unit in channel i and
an input unit in channel l , with an offset of m rows and n
columns between them.

We may skip over some positions of the kernel in order to
reduce the computational cost:

Z
(i)
j ,k =

∑
l ,m,n

I
(l)
(j−1)×s+m,(k−1)×s+nK

(i ,l)
m,n + b(i)

s is the stride of this downsampled convolution

Suppose we want to minimize some loss function J(K , b)
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Backpropagation

During back-propagation, we will receive a tensor G such that

G
(i)
j ,k = ∂

∂Z
(i)
j,k

J(K , b)

Using chain rule, the derivatives with respect to the kernel can
be written as:

∂

∂K
(i,l)
j,k

J(K , b) =
∑
m,n

∂J(K , b)

∂Z
(i)
m,n

∂Z
(i)
m,n

∂K
(i,l)
j,k

=
∑
m,n

I
(l)
(m−1)×s+j,(n−1)×s+kG

(i)
m,n

∂

∂b(i)
J(K , b) =

∑
m,n

∂J(K , b)

∂Z
(i)
m,n

∂Z
(i)
m,n

∂b(i)
=

∑
m,n

G (i)
m,n

Parameters K
(i ,l)
j ,k and b(i) can be updated as follows:

K
(i ,l)
j ,k = K

(i ,l)
j ,k − α

∂

∂K
(i ,l)
j ,k

J(K , b)

b(i) = b(i) − α ∂

∂b(i)
J(K , b)
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Backpropagation

The gradient with respect to I for back-propagating the error
farther:

∂

∂I
(i)
j ,k

J(K , b) =
∑
l ,m,n

∂J(K , b)

∂Z
(l)
m,n

∂Z
(l)
m,n

∂I
(i)
j ,k

=
∑
m,p
s.t.

(m−1)×s+p=j

∑
n,q
s.t.

(n−1)×s+q=k

∑
l

K
(l ,i)
p,q G

(l)
m,n

As we can see, the backward pass for a convolution operation
(for both the input and the kernel) is also a convolution (but
with spatially-flipped filters).
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Non-linearity
Linear functions do not work–
Multi-layer Linear Transformation can
still be represented by a single-layered
one.

O = f (
∑
i

XiKi + b)

sigmoid function: f (z) = 1
1+exp(−z)

hyperbolic tangent:
tanh(z) = ez−e−z

ez+e−z

rectified linear function (ReLU):
f (z) = max(0, z)

leaky ReLU:
f (z) = 1(z < 0)(αz) + 1(z >=
0)(z),
where 0 < α << 1 is a small
constant

f

Activation
function

O
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Pooling

A convolutional layer consists of
several layers (stages)

Convolution layer (stage)

Z
(i)
j,k =

∑
l,m,n

I
(l)
j+m−1,k+n−1K

(i,l)
m,n

Nonlinerity layer (stage)

O = f (
∑
i

XiKi + b)

Pooling layer (stage)

CHAPTER 9. CONVOLUTIONAL NETWORKS

Convolutional Layer

Input to layer

Convolution stage:

A ne transformffi

Detector stage:

Nonlinearity

e.g., rectified linear

Pooling stage

Next layer

Input to layers

Convolution layer:

A ne transform ffi

Detector layer: Nonlinearity

e.g., rectified linear

Pooling layer

Next layer

Complex layer terminology Simple layer terminology

Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left) In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with each
layer having many “stages.” In this terminology, there is a one-to-one mapping between
kernel tensors and network layers. In this book we generally use this terminology. (Right)
In this terminology, the convolutional net is viewed as a larger number of simple layers;
every step of processing is regarded as a layer in its own right. This means that not every
“layer” has parameters.

341
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Pooling

A pooling function replaces the output of the layer at a certain
location with a summary statistic of the nearby outputs.

Max pooling
Average pooling
L2-norm pooling
Probability weighted pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

Max pool with 2*2 
filters and stride 2
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Pooling

Properties of pooling:

invariance to small translations of
the input

improve statistical efficiency and
reduce memory requirements

– reduce the input of next layer

handle inputs of variable size

Figure 2: Max pooling
introduces invariance.
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Backpropagation

The backpropagation of a pooling layer is an upsampling
operation that inverses the subsampling in the forward pass.

E.g. the backward pass for a max pooling layer routes the
gradient to the input that had the highest value in the forward
pass.

0 0 0 0

0 0.4 0 1.0

0.9 0 0 0

0 0 0 2.4

0.4 1.0

0.9 2.4

upsampling

gradients
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Convolution and pooling as an infinitely strong prior

A convolutional layer can be viewed as a
fully-connected layer with an infinitely
strong prior over its weights.

This prior is that the weights for one
hidden neuron must be identical to the
weights of its neighbor, but shifted in
space.

In other words, the weights must be zero,
except for in the small field assigned to
that hidden neuron.

Likewise, the use of pooling is an infinitely
strong prior that each unit should be
invariant to small translations.

0

0

0

0

K0

K1

K2

X0

X1

X2

X3

X4

X5

X6

Y

35 / 94



Other convolution

local convolution
– without sharing

parameters across locations

tiled convolution
– a set of t different

kernels is circularly used
– neighboring units in the

output have different
parameters

– after we have gone
through t kernels, we cycle
back to the first kernel

standard convolution
– equal to tiled

convolution with t = 1

Local Convolution

Tiled Convolution

Standard Convolution
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History of CNNs
History:

The idea called Multi-Stage Hubel-Wiesel Architectures was
rooted in Hubel and Wiesel’s classic 1962 work on the cat’s
primary visual cortex;

A similar model to be simulated on a computer was
Fukushima’s Neocognition;

In 1989, Lecun developed the modern convolutional network
by applying back-propagation algorithm to 2D convolution.

Applications:

In 1996, an operational bank check reading system based on
CNNs was developed at AT&T (Lecun). By the late 90’s, it
was reading over 10% of all the checks in the US;

In 2009, Google deployed a ConvNet to detect faces and
license plate in StreetView images so as to protect privacy;

Vidient Technologies had developed a ConvNet-based video
surveillance system deployed in several airports in the US.
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ILSVRC

ILSVRC (Large Scale Visual Recognition Challenge) is a
well-known computer vision competition, held from 2010 to
2017.
The challenges include classification, localization and object
detection.
The classification task provides more than 1,000,000 labeled
training images and 100,000 test images. The competitors
need to output the top 5 (out of 1,000) most likely categories
for each image. Performance is evaluated by error rate. (Rate
of failure to contain the correct category in the output 5
categories.)
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Non-CNN methods

The ILSVRC competition is introduced by Alex Berg from
Stony Brook, Jia Deng from Princeton & Stanford, and
Fei-Fei Li from Stanford in 2010. (Also with a naive baseline
model of 0.80 error rate.)

In 2010 and 2011, the high-ranked methods of ILSVRC are
using non-CNN methods, like SIFT,LBP, FV,
SVM,GIST,CSIFT, stacking, weighted sum, boosting, etc.

The winner (classification) of 2010 is Descriptor Coding +
SVM from NEC & UIUC, with a 0.28 error rate on
classification task.
The winner (classification) of 2011 is XRCE, with a 0.26 error
rate on classification task.

However, the human level error rate is 0.051.
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AlexNet

The earliest representative ”deep learning” model is the
AlexNet (Krizhevsky, Alex. ”ImageNet Classification with
Deep Convolutional Neural Networks” 2013)
Alexnet is the first deep CNN method that achieves significant
improvement in image classification.
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AlexNet

AlexNet uses a deep CNN with
7 hidden layers.

The top-5 classification error
rate of AlexNet is 0.15, which is
a significant improvement,
comparing with best mixtures
of non-CNN methods (0.26).

This great success innovates the
development of CNN.

The submitted version is an
ensemble of 7 AlexNets.

AlexNet single model achieves
0.17 error rate.
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ILSVRC 2012 & 2013

AlexNet (SuperVision) won ILSVRC 2012 classification task
with a 0.15 top-5 error rate.

The ILSVRC 2013 classification winner, Clarifai, uses an
ensembled model of CNNs and achieves 0.11 top-5 error rate.

Although team Clarifai has only 1 member, Matthew Zeiler in
ILSVRC 2013, Clarifai is now a sucessful company focusing on
computer vision.
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Deeper CNNs — GoogleNet

Figure 3: Illustration of GoogleNet.

The ILSVRC 2014 classification winner is the GoogleNet, a
22-layered CNN which achieves 0.066 error rate.
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Deeper CNNs — VGG

Figure 4: Illustration of VGG16.

The ILSVRC 2014 classification runner-up is VGG. the
combination of 11,13,16,19-layered CNNs achieves 0.073 error
rate. A single VGGNet has a 0.084 error rate.
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Deeper CNNs — ResNet

MSRA uses the ensemble of ResNet, and
wins most of the competitions ILSVRC
2015. Specifically, on image classification
task, the top-5 error rate is 0.036. (As for
a 152 layer ResNet single model, the error
rate is 0.045).

Left illustrates ResNet-34 architecture
(compared with VGG-19 and CNN-34)

ResNet uses residual connection, therefore
the network can reach as much as 1,202
layers while still gaining performance.
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ILSVRC 2016 & 2017

In ILSVRC 2016, the best classification result comes from
Trimps-Soushen (The Third Research Institute of Ministry of
Public Security), with an error rate of 0.030. (Using ensemble
of multiple ResNet and Inception models.)

In ILSVRC 2017 (the last ILSVRC), the best classification
result comes from WMW (Momenta & Oxford), with an error
rate of 0.0225. (Using ensemble of variations of SENet)
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Network in Network

Network in network (Min Lin, Qiang Chen, Shuicheng Yan,
2013) proposes two techniques that greatly innovate the
development of modern CNN architectures.
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Network in Network — Tech 1

Instead of a simple matrix multiplication and activation
function between two layers, we can put some fancier things
between that. (e.g. a fully-connected MLP network).

MLP network in Convolutional network.
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Network in Network — Tech 1 (Cont.)

Local MLP (applies to every single neuron instead of the
whole network).

So an Mlpconv layer can also be viewed as one or more 1x1
convolution layers concatenated with a traditional (e.g.,
3x3/5x5) convolution layer.
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Network in Network — Tech 2

Instead of the
fully-connected layer in the
final classification stage, we
can do global average
pooling that averages all
output neurons to be the
output.

This makes the output of
the network robust to
position of the object.

Avoid the overfitting
problem of fully-connected
layers!

52 / 94



Network in Network

Review the convolutional layers and classification layers

Convolution:

O = f (
∑
i

XiKi + b), (CNN) (4)

O = f (
∑
i

MLP(Xi )Ki + b), (NIN) (5)

Classification

O = MLP(X11,X12, ...,X1m,X21, ...,Xnm), (CNN) (6)

O = average(X1, ...Xn), (Global Pooling) (7)

Idea: Add parameter sharing parts (local MLP) to avoid the
original overfitting parts (Global MLP)
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Inception

Inspired by NIN, researchers
are trying to find an optimal
local sparse structure
(Szegedy et al., 2015).

1x1,3x3,5x5,pooling are
commonly used filters,
stacking with an 1x1 is also
useful in NIN, so why not
use all of them ?

Inception was introduced.
Inception-v1 can be also
viewed as GoogleNet
(ILSVRC 2014 winner).
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Inception

Idea: Parallel convolution. Instead of layer
by layer convolution, the convolution
forms various paths in Inception models.

Single model achieves 0.079 top-5 error
rate on ILSVRC, the stack of 7 models
achieve 0.067 error rate.
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Inception

Inception-v4 Model

Inception A

Inception B

Inception C

Reduction A
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Inception

Stem

Reduction B

Inception grows to be a very
complicated serie of deep CNN
stacking models (Szegedy et al. 2016).

Instead of simply combining all filters,
better local structures are found by
researchers.

Without Residual connection, pure
CNN (single model) (Inception-v4)
can reach 0.050 error rate on ILSVRC.
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ResNet

ResNet (He et al. 2015) employs the idea of residual
representation and shortcut connections, and introduced
ResNet.
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ResNet

Comparison between different ResNet activation methods.
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ResNet

Review the convolutional layers

Convolution:

Oi ,p = f (
∑
j∈Ni

MLP(Oi ,p−1)K(j ,i),p + bp), (NIN) (8)

Oi ,p is the pth layer representation of node i .

Oi ,p = f (
∑
j∈Ni

MLP(Oi ,p−1)K(j ,i),p + bp + Oi ,p−1), (ResNet)

(9)

Oi ,p = f (
∑
j∈Ni

MLP(Oi ,p−1)K(j ,i),p+bp)+Oi ,p−1, (ResNet−pre)

(10)
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ResNet

Despite being revolutionary
in computer vision, ResNet
has wide applications, not
only in computer vision.

ResNet AlphaGo is ∼ 600
ELO better than CNN
AlphaGo.

600 ELO difference is
∼ 96% win rate. Much
Better!
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ResNet

ResNet helps Alphago-Master achieves 60-0 against human
professionals, beating Ke Jie and the union team of 5 other
top professionals.
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ResNeXt

Left: Resnet Block, Right: ResNeXt Block

ResNeXt (Saining Xie, Ross Girshick, Piotr Dollr, Zhuowen
Tu, Kaiming He, 2016) is the runner-up of 2016 ILSVRC.

Instead of layer by layer convolution, the convolution forms
various paths in ResNeXt models.

Group Convolution reduces calculation complexity/number of
parameters while still preserving representational information.
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ResNeXt

Group Convolution: Convolution by groups.

Convolution:

Oi ,p = f (
∑
j∈Ni

MLP(Oi ,p−1)K(j ,i),p + bp) + Oi ,p−1, (Resnet)

(11)
Assume group = n, Oi ,p−1 = concat(Oi ,p−1,1, ...,Oi ,p−1,n)
(separation to n groups)

Oi ,p,m = f (
∑
j∈Ni

MLP(Oi ,p−1,m)K(j ,i),p,m + bp,1) (12)

Oi ,p = concat(Oi ,p,1,Oi ,p,2, ...,Oi ,p,n) + Oi ,p−1, (ResNeXt)
(13)
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ResNeXt

Equivalent ResNeXt structures

ResNeXt can be viewed as
(a).sum of 32-path, 256-dimensional convolution
(b).concatenation of 32-path, 4-dimensional convolution
(c).group convolution with group=32

Three views are Equivalent!

ResNeXt-101 single model has an error rate of 0.053 on
ILSVRC. (0.030 when ensembled)
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ShuffleNet

ShuffleNet (Zhang et al., 2017) adds channel shuffle on top of
ResNeXt.
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ShuffleNet

The channel shuffle helps increase the efficiency of group
convolution.

Shufflenet performs better than ResNeXt when restricting the
number of parameters/flops to be small.

This enables real-world application on mobile devices.

67 / 94



DenseNet

Instead of only connecting with the previous layer, DenseNet
collects information from all previous layers inside a dense
block.

The densely connected property makes sense and
DenseNet-161 (k=48) single model achieves 0.053 error rate
on ILSVRC.
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DenseNet

DenseNet:

Convolution:

Oi ,p = f (
∑
j∈Ni

MLP(Oi ,p−1)K(j ,i),p + bp) + Oi ,p−1, (ResNet)

(14)

Oi ,p = concat(Oi ,p−1, f (
∑
j∈Ni

MLP(Oi ,p−1)K(j ,i),p+bp)), (DenseNet)

(15)

The structure of DenseNet can be viewed as concatenating
the feature representation of a new layer to the feature
representation of the previous layer.
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CondenseNet

CondenseNet (Liu et al. 2018) is the group convolution
version of DenseMet.

Due to the property of DenseNet (features come from all
previous layers, two channels come from different stages of the
network), naive group convolution doesn’t work.

Thus need to learn the best way to group.
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CondenseNet

Remove edges with low activation (smallest L1-norm on edge
weight) repeatedly during training, until the model size is
small enough.
Finally, forms a group convolution structure for inference.
CondenseNet performs better than DenseNet and Shufflenet
under same number of parameters/flops. 71 / 94



SENet

The SENet (Squeeze and Excitation Networks) (Jie Hu, Li
Shen, Samuel Albanie, Gang Sun, Enhua Wu, 2018) is the last
winner of ILSVRC classification task.

Idea: All channels are created unequal, and shall be assigned
different weights.
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SENet

Squeeze-and-Excitation Block: Weight the channels!

How to weight? Global average pooling

Given feature representations of the current layer
F : H ×W × C , do global average pooling G : 1× 1× C

Gk =
1

HW

∑
i ,j

Fi ,j ,k (16)

Use an MLP to determine the weight of each channel.

Wk = MLP(Gk) (17)

F ′i ,j ,k = Fi ,j ,kWk , ∀i , j , k (18)

Use F ′ as the output of the current layer.
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SENet

The Squeeze-and-Excitation block
can be adopted in
Inception/Resnet architectures.

A single SENet-154 model achieves
0.038 top-5(0.174 top-1) error rate
on ILSVRC dataset. (When
ensembled this goes to 0.0225)
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SKnet

SKnet(Selective Kernel network) (Xiang Li, Wenhai Wang,
Xiaolin Hu, Jian Yang, 2019) is a recent enhancement of
SENet.

Not only channels, but also kernels are created unequal.

SKnet adopts different weights on different kernels using
attention mechanism. Performs slightly better than SENet.
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NasNet-AutoML

CNNs structures are becoming more and more complicated.

Relies on personalized experiences to find useful CNN
architectures.

Idea: automatically learn CNN architectures. NasNet(Neural
Architecture Search Networks)(Zoph et al. 2017)

The Neural Architecture Search Framework
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NasNet-AutoML

NasNet Architecture

The NasNet searches a best
architecture (best
Normal/Reduction cell
structure) on a small dataset
(Cifar-10), and transfers the
learned structure to a large
dataset (ImageNet).

The transfer learning process
avoids doubts of overfitting
to a certain dataset.
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NasNet-AutoML

NasNet Algorithm

For each cell, the input hidden state is hi , hi1 from two
previous cells.
1.Select a hidden state from hi , hi−1 or from the set of hidden
states created in previous blocks.
2.Select a second hidden state from the same options as in 1.
3.Select an operation to apply to the hidden state selected in 1.
4.Select an operation to apply to the hidden state selected in 2.
5. Select a method to combine the outputs of 3 and 4 to
create a new hidden state.

Available Operations

identity

3x3 max pooling

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv

7x7 depthwise-separable conv

1x3 then 3x1 convolution

1x7 then 7x1 convolution

5x5 depthwise-seperable conv

7x7 max pooling

3x3 convolution

3x3 dilated convolution
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NasNet-AutoML

The NasNet samples and evaluates decisions using the output
of the softmax classifiers from a controller RNN.
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NasNet-AutoML

The searched best Normal Cell and Reduction Cell on Cifar-10.

The NasNet finally gets a searched best structure on cifar-10
for Normal and Reduction cells, illustrated above.
A single NasNet model gets 0.038 top-5 error rate on ILSVRC
classification dataset.
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ILSVRC Detection Task

In year 2013, ILSVRC first introduces the object detection
task.

Participants are required to detect all objects on an image and
label them.

This challenge is much harder than classification.
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ILSVRC Detection 2013 & 2014

The winner of 2013,UvA-EuVision achieves MAP=0.226 using
non-CNN methods (SIFT+selective search), and use a CNN to
compute the prior for the presence of an object in the image.

The winner of 2014, NUS, combines NIN with kernel
regression, SVM and data augmentation techniques, and
achieve MAP=0.372.
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R-CNN

Ross Girshick introduced R-CNN (Region Proposal CNN)
(Girshick et al., 2013).

R-CNN uses traditional method to extract region proposals,
then use Alexnet to extract features for these region
proposals, and use a category-specific SVM to classify
whether a region correspond to an item or not.

MAP=0.314 on ILSVRC detection dataset.
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Fast R-CNN

Fast R-CNN (Ross Girshick, 2015) lets the input image passes
through a CNN (VGG-16) first, then examine on region of
interests. Thus the image has to pass through the CNN only
once instead of once for every region proposal.

Different from R-CNN, Fast R-CNN is trained end-to-end, and
learns the accurate bounding box itself.
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Faster R-CNN

Faster R-CNN (Ren et al., 2015) is a revolutionary work on
object detection, for it takes the idea that the feature
representations of CNNs (VGG-16) can not only be used to
classify objects, but also be used to learn the RoI(region of
interests) much more efficiently and effectively.
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Faster R-CNN

Instead of 2,000 region proposals in R-CNN from traditional
methods, faster R-CNN only generates 9 ROIs per image.

However, faster R-CNN get MAP=0.621 on ILSVRC detection
task, and wins the ILSVRC 2015 detection competition.
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Mask R-CNN

Mask R-CNN (He et al., 2017) adds a mask branch besides the
classification and bounding box regressor.
The mask is used to mask out the object (For each RoI we create a
mask, target=1 if there exist an object on that pixel, target=0
otherwise).
The mask branch forces the model to learn finer spatial information
of the object. Therefore the performance is increased even if we
don’t use the mask branch in inference.
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ILSVRC Detection 2016 & 2017

The winner of 2016, CUImage achieves MAP=0.663 using
ensembled methods of fast R-CNN and some other methods.

The winner of 2017, BDAT, achieves MAP=0.731 using an
ensemble of lots of methods.

The ILSVRC detection dataset is not as influential as the
image classification dataset. Currently researchers working on
image classification still prefers Imagenet/ILSVRC, but
researchers working on object detection prefers the COCO
dataset, which is larger and more representative,
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Summary of CNNs

Scale up neural networks to process very large images / video
sequences

Sparse connections
Parameter sharing

Automatically generalize across spatial translations of input

Applicable to any input that is laid out on a grid
(1D,2D,3D,· · · )
The implementation of CNN is a revolution in the subject of
computer vision.

The implementation of AlexNet lowers ImageNet top-5 error
rate from 0.26 to 0.15.

Many modern variations of CNN structures and their
ensembles further lowers this error rate to 0.0225, surpassing
human level(error rate=0.051). Even single model can achieve
0.038 error rate.
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Summary of CNNs
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Summary of CNNs

Finally, researchers develop AutoML to automatically search
CNN structures.

Within 5 years, CNN revolutionized the image classification
field. Now even a small CNN inside your cell phone may do
facial recognition/image classification better than you.

We also briefly introduced CNN implementations on object
detection. During 4 years of ILSVRC detection competition,
the winner performance grows from 0.226 MAP to 0.731
MAP.
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Thanks.

HP: http://keg.cs.tsinghua.edu.cn/jietang/
Email: jietang@tsinghua.edu.cn
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