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Introduction

o Convolutional Networks are a specialized kind of Feedforward
Neural Networks

o Neuron Science: connectivity pattern between its neurons is
inspired by the organization of the animal visual cortex

o Computer Science: matrix multiplication is replaced with
convolution

o Optimization: still use the same objective function: maximum
likelihood or minimum square error and the same solving
algorithm: back-propagation.
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Introduction

o Convolutional Networks are a specialized kind of Feedforward
Neural Networks

o CNN is also known as shift invariant or space invariant
artificial neural network (SIANN)

o wide applications in image and video recognition,
recommendation systems, natural language processing, and
recently network/graph data

o It might be hard to say who actually invented CNN

o but, clearly, LeNet-5 is a pioneering 7-layer convolutional
neural network?

o Yann LeCun is also viewed as the founder of convolutional nets
(CNN)

o The Turing Triangle:

23

lLeCun, Yann; Lon Bottou; Yoshua Bengio; Patrick Haffner (1998).
Gradient-based learning applied to document recognition. Proceedings of the IEEE. 86
(11): 2278-2324.

2Deep Learning. Yann LeCun, Yoshua Bengio & Geoffrey Hinton. Nature 521,
436444 (28 May 2015)

3CHRONOLOGICAL LISTING OF A.M. TURING AWARD WINNERS

https://amturing.acm.org/byyear.cfm
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Why Convolutional Neural Networks

o Example: CIFAR-10 classification— The CIFAR-10 dataset
consists of 60000 32x32 colour images in 10 classes, with
6000 images per class.

o Scalability: In deep feedforward networks, each latent unit is
fully connected to all neurons in the previous layer and thus
cannot not scale well to higher resolution images, e.g., an
image of 200 x 200 x 3 would result in neurons that have
200 * 200 * 3 = 120,000 weights each.
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Why Convolutional Neural Networks

o Example: CIFAR-10 classification— The CIFAR-10 dataset
consists of 60000 32x32 colour images in 10 classes, with
6000 images per class.

o Scalability: In deep feedforward networks, each latent unit is
fully...

o 3D volumes of neurons: unlike a regular Neural Network, the
layers of a ConvNet have neurons arranged in 3 dimensions:
width, height, depth. In this way, every layer of a CNN
transforms the 3D input volume to the 3D output volume.

\" ‘V«O» oo
QTS / (TR
) . output layer s s 88888 ><; g ﬁ

input layer
hidden layer 1 hidden layer 2

A regular 3-layer Neural Network vs. A Convolutional Neural Network
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What is Convolutional Neural Network?
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o convolutional layers, pooling layers, fully-connected layers.

o Goal: approximate some map function f* (like deep forward
networks)
— e.g., a classifier y = £*(x; 0) to map an input x into a
category y
— and learns parameters § = (W’; b’) that result in the best
approximation.

94



What is CNN: CIFAR-10 example

o A simple CNN for CIFAR-10 classification could have the
architecture [INPUT—CONV— — —FCJ:

o

INPUT is the raw pixel values of the image of
[32 x 32 x 3] — ——width:32, height:32, and three color
channels: R, G, B.
CONV layer uses convolution to compute the output of
“neurons”, with each unit computing a dot product between
their weights for a small region in the input volume. This
results in volume such as [32 x 32 x 12] if we decided to use
12 convolution kernels.

layer applies an activation function, such as the
max(0, z). This leaves the size of volume unchanged
([32 x 32 x 12]).

layer performs a subsampling operation along the
spatial dimensions (width, height), resulting in volume such as
[16 x 16 x 12].
FC (i.e. fully-connected) layer computes the class scores,
resulting volume of size [1 x 1 x 10].
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What is CNN

In summary:

o A CNN architecture is in the simplest case a list of Layers that
transform the image volume into an output volume (e.g.
holding the class scores)

o There are a few distinct types of Layers (e.g.
CONV/FC/RELU/POOL are by far the most popular)

o Each Layer accepts an input 3D volume and transforms it to
an output 3D volume through a differentiable function

o Each Layer may or may not have parameters (e.g. CONV/FC
do, RELU/POOL dont)

o Each Layer may or may not have additional hyperparameters
(e.g. CONV/FC/POOL do, RELU doesnt)
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Overview

@ Convolution & Pooling
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What is Convolution?

o In mathematics, convolution is an operation on two functions
(f and g),

(ree)e)= [ rir)g(e—n)dr
o 1)
= / f(t—7)g(r)dr

—00

o For functions f and g defined on the set Z of integers, we can
define the discrete convolution of f and g

(Fxg)(n)= ) flmlgln—m]
e (2)
= fln— mlg[m]
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What is Convolution?

o Suppose we are estimating the location with a GPS. f[n] is
the value from GPS, but possibly with noise.

o To obtain a less noisy estimation, we can use recent values of
the GPS to smooth estimation with a weighting function
g[m], but of course recent value should have a higher weight

(f = g)( Z f[mlgln — m] (3)

m=—0oQ

16
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What is Convolution?

In ML, the input usually forms a multi-dimensional structure. For
example, convolution is used to transform a 2D input / with a 2D
kernel K:

Z(i,j) = (I« K)(i ZZ m,n)K(i — m,j— n)

In ML, learning algorithm based on convolution with kernel flipping
will learn a kernel that is flipped relative to the kernel learned
without flipping.

So, many ML libraries implement cross-correlation but call it
convolution:

Z(i,j) = (I = K)(i,)) ZZII—I—mJ—&—n)K( n)

Convolution Cross-correlation  Autocorrelation
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2D Convolution
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Advantages of CNN

o CNN leverages three important
ideas

o Sparse connectivity: hidden
neurons only connected to small
regions in the input

o Parameter sharing: the same
parameters are shared across all
spatial locations

o Equivariance: i.e.,

fg(x)) = &(f(x))

OO OO
O OO0
OO OO
OO OO
ORONOLO
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Sparse connectivity vs. Full connection

ONORONOXO)
ORONONORO.

full connection obtained
with deep structure

view from below view from above
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Edge detection by convolution

1] -1 Output

Kernel

Figure 1: The image on the right was formed by taking each pixel in the original
image and subtracting the value of its neighboring pixel on the left. Both images are
280 pixels tall. The input image is 320 pixels wide while the output image is 319 pixels
wide. This transformation can be described by a convolution kernel containing two
elements, and requires 319 x 280 x 3 = 267, 960 floating point operations (two
multiplications and one addition per output pixel) to compute using convolution.

21/94



Efficiency of convolution

o Input size: 320 x 280
o Kernel Size: 2 x 1
o OQutput Size: 319 x 280

1 -1 Output
Kernel

Convolution Dense matrix Sparse matrix

*9Q()*32()* %91 0% _
Stored floats 319%280*320*280  2*319*280 =
> 8e9 178,640
INGETRGTIERGE  319*280*3 = 1660 sam]es's
€ convolution
dd 267,960
— (267,960)
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Convolutional Layer

The convolutional layer is the core building block of a CNN that
does most of the computational heavy lifting.

Local Connectivity.

Each neuron in CNN only connects to a local region of the input
volume. The local region is called the receptive field of the neuron.
The extent of the connectivity along the depth axis is always equal
to the depth of the input volume.

0000
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Convolutional Layer (cont.)

0000

o Example 1. Suppose that the input volume has size [32x32x3]. If
the receptive field (or the filter size) is 5x5, then each neuron in the
Conv Layer will have weights to a [5x5x3] region in the input
volume. Notice that the extent of the connectivity along the depth
axis must be 3, since this is the depth of the input volume.

o Example 2. Similarly for the input [16x16x20] with the receptive
field size of 3x3, every neuron in the Conv Layer would now have a
total of 3*3*20 = 180 connections to the input volume. Again, the
connectivity is local in space (e.g. 3x3), but full along the input
depth (20).
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Spatial arrangement

o In the convolution layer, three hyperparameters control the
size of the output volume: depth, and zero-padding:

o the depth of the output volume is a hyperparameter: it
corresponds to the number of kernels we would like to use;

o the is which we slide the kernel. When the stride is 1
then we move the kernels one grid at a time. When the stride
is 2 then the kernels jump 2 grids at a time. This will produce
smaller output volumes;

o sometimes it will be convenient to pad the input volume with
zeros around the border. The nice feature of zero-padding is
that it will allow us to control the spatial size of the output
volumes (One special case is when enough zero-padding is
added to keep the size of the output equal to the size of the
input).
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Convolution

o When working with images, we usually think of the input /
and output Z of convolution as being 3D tensors:

i il
jk_ Z/(—&-)m 1,k+n— lK( )+b()

I,m,n

° Zj(",g is the value of output unit within channel i at row j and
column k

o kernel k is a 4D tensor with element K,(ni:,/,) giving the
connection strength between an output unit in channel / and
an input unit in channel /, with an offset of m rows and n
columns between them.

o We may skip over some positions of the kernel in order to
reduce the computational cost:

(N (i,1)
Jk_ Z/j 1)xs+m,(k— 1)><s+nK +b()

I,m,n

o s is the stride of this downsampled convolution

o Suppose we want to minimize some loss function J(K, b)
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Backpropagation

o During back-propagation, we will receive a tensor G such that
Gk = 2K, b)

o Using cham rule, the derivatives with respect to the kernel can
be written as:
B 0J(K, b) 0Z%,
K, b= L2 TEma G,
aKj(,l,t;I) ( ) ; azr(n’)n aK'(I,/) Z (m—1)xs+j,(n—1)xs+k

0 aJ(K b) azmn 0
550 /(K b) = ; 220 Z G

(1)

o Parameters KJ . and b() can be updated as follows:

0
KD =K —a—"-5J(K, b)
J,k il ’
oK)
0
() — p) _ g9
b = b — o J(K. b)
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Backpropagation

o The gradient with respect to / for back-propagating the error
farther:

K, b) 0z,
8(,-) (K. b) = Z oJ( (I,)b)a (,-’)
ol o 0Zmn  OLY

1i) ~U
SR VD VD S
m,p n,q !
s.t. s.t.
(m—1)xs+p=j (n—1)xs+qg=k
o As we can see, the backward pass for a convolution operation

(for both the input and the kernel) is also a convolution (but
with spatially-flipped filters).
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Non-linearity
Linear functions do not work-
Multi-layer Linear Transformation can
still be represented by a single-layered
one.

0 =f()_XiKi + b)

1

o sigmoid function: f(z) = Trep(=2)

o hyperbolic tangent:
tanh(z) = &7e=

o rectified linear function (ReLU):
f(z) = max(0, z)

o leaky RelLU:
f(z) =1z < 0)(az)+ 1(z >=
0)(2),
where 0 < a << 1 is a small
constant

Activation
function
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Pooling

Next layer

o A convolutional layer consists of yy
several (stages)

o Convolution layer (stage)

i ! i
ZJ(,IE = Z Ij(-k—)m—l,k—ﬁ—n—lKr(n,)rlv)
I,m,n 4

Detector layer: Nonlinearity

Pooling layer

e.g., rectified linear

2
O — f(z X,' K,‘ + b) Convolution layer:
i

o Nonlinerity layer (stage)

Affine transform

f

o Pooli ng |ayer (Stage) Input to layers
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Pooling

o A pooling function replaces the output of the layer at a certain
location with a summary statistic of the nearby outputs.

Max pooling

Average pooling

L2-norm pooling

Probability weighted pooling

© © 0 o

Max pool with 2*2
filters and stride 2 6 8

Rlw|un|~
NIN[oO |~
wWlkr|N|N
M O|00O|PD>
w
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Pooling

POOLING STAGE

Properties of pooling: ’ ‘4@ @ @ ‘
o invariance to small translations of ' ‘ ° ° o
oy

the input DETECTOR STAGE

o improve statistical efficiency and momsma
reduce memory requirements @

— reduce the input of next layer
ofofotol

DETECTOR STAGE

o handle inputs of variable size

Figure 2: Max pooling
introduces invariance.
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Backpropagation

o The backpropagation of a pooling layer is an upsampling
operation that inverses the subsampling in the forward pass.
o E.g. the backward pass for a max pooling layer routes the

gradient to the input that had the highest value in the forward
pass.

04|1.0 upsampling
0.9 |24 0510 | 010

gradients
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Convolution and pooling as an infinitely strong prior

o A convolutional layer can be viewed as a
fully-connected layer with an infinitely
strong prior over its weights.

o This prior is that the weights for one
hidden neuron must be identical to the
weights of its neighbor, but shifted in
space.

o In other words, the weights must be zero,
except for in the small field assigned to
that hidden neuron.

o Likewise, the use of pooling is an infinitely
strong prior that each unit should be
invariant to small translations.

35/94



Other convolution

o local convolution
— without sharing
parameters across locations

o tiled convolution

— a set of t different
kernels is circularly used

— neighboring units in the
output have different
parameters

— after we have gone
through t kernels, we cycle
back to the first kernel

o standard convolution
_ equa| to tiled Standard Convolution
convolution with t =1
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Outline

(3 Development of CNN
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History of CNNs
History:
o The idea called Multi-Stage Hubel-Wiesel Architectures was
rooted in Hubel and Wiesel's classic 1962 work on the cat'’s
primary visual cortex;

o A similar model to be simulated on a computer was
Fukushima’'s Neocognition;

o In 1989, Lecun developed the modern convolutional network

by applying back-propagation algorithm to 2D convolution.
Applications:

o In 1996, an operational bank check reading system based on
CNNs was developed at AT&T (Lecun). By the late 90's, it
was reading over 10% of all the checks in the US;

o In 2009, Google deployed a ConvNet to detect faces and
license plate in StreetView images so as to protect privacy;

o Vidient Technologies had developed a ConvNet-based video
surveillance system deployed in several airports in the US.
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o ILSVRC (Large Scale Visual Recognition Challenge) is a
well-known computer vision competition, held from 2010 to
2017.

o The challenges include classification, localization and object
detection.

o The classification task provides more than 1,000,000 labeled
training images and 100,000 test images. The competitors
need to output the top 5 (out of 1,000) most likely categories
for each image. Performance is evaluated by error rate. (Rate
of failure to contain the correct category in the output 5

categories.)
39/94



Non-CNN methods

o The ILSVRC competition is introduced by Alex Berg from
Stony Brook, Jia Deng from Princeton & Stanford, and
Fei-Fei Li from Stanford in 2010. (Also with a naive baseline
model of 0.80 error rate.)

o In 2010 and 2011, the high-ranked methods of ILSVRC are

using non-CNN methods, like SIFT,LBP, FV,
SVM,GIST,CSIFT, stacking, weighted sum, boosting, etc.

o The winner (classification) of 2010 is Descriptor Coding +
SVM from NEC & UIUC, with a 0.28 error rate on
classification task.

o The winner (classification) of 2011 is XRCE, with a 0.26 error
rate on classification task.

o However, the human level error rate is 0.051.
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AlexNet

13 13

-, 13

192

1000

> Dense
Dense| |Dense

Y |13

192 128 L
Max a3 2048

Pooling

Max Max
Pooling Pooling

Local Response Local Response
Normalization Normalization

o The earliest representative " deep learning” model is the
AlexNet (Krizhevsky, Alex. "ImageNet Classification with
Deep Convolutional Neural Networks” 2013)

o Alexnet is the first deep CNN method that achieves significant

improvement in image classification.
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AlexNet

Team name Filename Error (5 guesses) Description
testpreds141-146.2008-131-
uperision 1501
Supeiok 137-145-146 2011-1451 018318
testpreds-131-137-145135- Using only supplied
Supervision o 016422 19 only Supe
1astoa
st pred_FVs_WLACs_weighted.t || 0.26172
sl pred_FVs_weighted.ixt 026802
Naive sum of scores from
st red_FVs_summed xt 026646
" classifers using each FV.
Naive sum of scores from
each classifer wit
st pred_FVs_wLACs_summed.xt || 026952
Mixod soloction rom
High-Level SVM sc
OXFORD_VGG test_adhocmix_classificationtxt || 026979
XRCE/NAIA ros_IM_svm.ixt 027058

©

AlexNet uses a deep CNN with
7 hidden layers.

The top-5 classification error
rate of AlexNet is 0.15, which is
a significant improvement,
comparing with best mixtures
of non-CNN methods (0.26).
This great success innovates the
development of CNN.

The submitted version is an
ensemble of 7 AlexNets.
AlexNet single model achieves
0.17 error rate.
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ILSVRC 2012 & 2013

o AlexNet (SuperVision) won ILSVRC 2012 classification task
with a 0.15 top-5 error rate.

o The ILSVRC 2013 classification winner, Clarifai, uses an
ensembled model of CNNs and achieves 0.11 top-5 error rate.

o Although team Clarifai has only 1 member, Matthew Zeiler in
ILSVRC 2013, Clarifai is now a sucessful company focusing on
computer vision.
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Deeper CNNs — GoogleNet
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Figure 3: Illustration of GoogleNet.

o The ILSVRC 2014 classification winner is the GoogleNet, a
22-layered CNN which achieves 0.066 error rate.
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Deeper CNNs — VGG

224x224x3 224 x224 x 64

112x112x 128

56X 56 x 256

8 x 28 x 512 7x7x512
X X
; 714 x 14 x 512 . 1x1x4096 1x1x1000

(=7 convolution+RelLU
7} max pooling
fully nected+RelLU
softmax

Figure 4: Illustration of VGG16.

o The ILSVRC 2014 classification runner-up is VGG. the
combination of 11,13,16,19-layered CNNs achieves 0.073 error
rate. A single VGGNet has a 0.084 error rate.
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Deeper CNNs — ResNet

o MSRA uses the ensemble of ResNet, and
wins most of the competitions ILSVRC
2015. Specifically, on image classification
task, the top-5 error rate is 0.036. (As for
a 152 layer ResNet single model, the error
rate is 0.045).

o Left illustrates ResNet-34 architecture
(compared with VGG-19 and CNN-34)

o ResNet uses residual connection, therefore
the network can reach as much as 1,202
layers while still gaining performance.
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ILSVRC 2016 & 2017

o In ILSVRC 2016, the best classification result comes from
Trimps-Soushen (The Third Research Institute of Ministry of
Public Security), with an error rate of 0.030. (Using ensemble
of multiple ResNet and Inception models.)

o In ILSVRC 2017 (the last ILSVRC), the best classification
result comes from WMW (Momenta & Oxford), with an error

rate of 0.0225. (Using ensemble of variations of SENet)
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Outline

(@ Modern CNN architectures
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Network in Network

Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking
of three mlpconv layers and one global average pooling layer.

o Network in network (Min Lin, Qiang Chen, Shuicheng Yan,
2013) proposes two techniques that greatly innovate the
development of modern CNN architectures.
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Network in Network — Tech 1

what if we pul a
Neural Network here in
place of this linear

AT e — G Y S e 4

o Instead of a simple matrix multiplication and activation
function between two layers, we can put some fancier things
between that. (e.g. a fully-connected MLP network).

o MLP network in Convolutional network.

50 /94



Network in Network — Tech 1 (Cont.)

(a) Linear convolution layer (b) Mlpconv layer

o Local MLP (applies to every single neuron instead of the
whole network).

o So an Mlpconv layer can also be viewed as one or more 1x1
convolution layers concatenated with a traditional (e.g.,
3x3/5x5) convolution layer.
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Network in Network — Tech 2

o Instead of the

The last MLPoonv layer fully-connected layer in the

has as many channels as

Theée.1 are classes in the final classification stage, we
model.
The global avg of can do global average
each channel becomes ;
’fTe score of each pooling that averages all
Class.
output neurons to be the
output.

o This makes the output of
the network robust to
position of the object.

o Avoid the overfitting
problem of fully-connected
layers!
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Network in Network

Review the convolutional layers and classification layers

Convolution:

O=f(>_XKi+b), (CNN) (4)

0 =f()_MLP(X))Ki+b),  (NIN) (5)

Classification
O = MLP(X11, X12, -+es X1m, X21, -+, Xnm)s (CNN) (6)

O = average(Xi,...Xn), (Global Pooling) (7)

Idea: Add parameter sharing parts (local MLP) to avoid the
original overfitting parts (Global MLP)
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Inception

Filter
concatenation

T —

_— —_—
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling
: )

-
—
~_|_—

() Inception module, naive version

=
T —
SS——

(b) Inception module with dimensionality reduction

545 convolutions

1x1 convolutions.

3x3 max pooling

Figure 2: Inception module

Inspired by NIN, researchers
are trying to find an optimal
local sparse structure
(Szegedy et al., 2015).

1x1,3x3,5x5,pooling are
commonly used filters,
stacking with an 1x1 is also
useful in NIN, so why not
use all of them ?

Inception was introduced.
Inception-vl can be also
viewed as GoogleNet
(ILSVRC 2014 winner).
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Inception

o ldea: Parallel convolution. Instead of layer
by layer convolution, the convolution
forms various paths in Inception models.

o Single model achieves 0.079 top-5 error
rate on ILSVRC, the stack of 7 models
achieve 0.067 error rate.

55 /94



Softmax it 1000

i

Dropout (keep 0.8) o 155

I

Avarage Pooling | osue s

i

3xInception-C  ouncsausi

f

Reduction-B  ousu sawisse

i

7XINCEPHION-B o sraioze

I

Reduction-A o 1m0z

|

4xInception-A | oupus sssces

I

Stem

i

Input (299x299x3) | mexsens

Inception-v4 Model

Inception

— 1©5)
et Canw 50 Come-
ooy o
i .
p— =
et
it concat
— 17 Conv.
51 Cans R ety
) @, -
- 7x1 Conv.
o 1 Cams 55
) e :
arcams
et camy i)
R e i

Fitlrconcat

Inception B

1 Gome

/ \ e s
=4 Ll o e
e C= A HED
P 2 o
= N 03 one
Pre i)
£ ¥

e
- (e

Inception C

Filter concat
e 363 Conv
7 (mstide 2V)
-
—
313 MaxPool 333 Conv 313 Conv
(stide 2 V) (nstide 2Y) 0)
~
~
x1 Conv.
®
~ -
N
Filter concat

Reduction A

56

94



Filter concat

— P
3x3 Conv. MaxPool
(192V) (stride=2 V)

Filter concat
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Reduction B

@ Inception grows to be a very
complicated serie of deep CNN

stacking models (Szegedy et al. 2016).

@ Instead of simply combining all filters,
better local structures are found by
researchers.

o Without Residual connection, pure
CNN (single model) (Inception-v4)
can reach 0.050 error rate on ILSVRC.
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ResNet

weight layer

X
identity

o ResNet (He et al. 2015) employs the idea of residual
representation and shortcut connections, and introduced
ResNet.
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ResNet

Table 2. Classification error (%) on the CIFAR-10 test set using different activation
functions.

case Fig. ResNet-110 | ResNet-164
original Residual Unit [1] | Fig. 4(a) 6.61 5.93
BN after addition Fig. 4(b) 8.17 6.50
ReLU before addition Fig. 4(c) 7.84 6.14
ReLU-only pre-activation | Fig. 4(d) 6.71 5.91
full pre-activation Fig. 4(e) 6.37 5.46

S~ I~ >~
weight RelU BLN

Bfl ReLU
RELLU BN

|
weight RelU BN
|
B Relu
|

additi RelU BN

Refu Re¢LU addition addition addition

X1t Xii1 Xpi1 Xri1 X141

(b) BN after (¢) ReLU before (d) ReLU-only
addition addition pre-activation

(a) original (e) full pre-activation

Comparison between different ResNet activation methods.
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ResNet

o Review the convolutional layers

o Convolution:

Oip = (D MLP(Oip-1)K(ji),p + bp), (NIN)  (8)
JEN;

O; , is the pth layer representation of node i.

Oip = (D MLP(0ip-1)K(i),p + bp + Oip1), (ResNet)

JEN;
(9)
Oip = f(z MLP(O; p-1)K(j,iy,ptbp)+0ip-1, (ResNet—pre)
JEN;
(10)
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o Despite being revolutionary
in computer vision, ResNet
has wide applications, not
only in computer vision.

o ResNet AlphaGo is ~ 600
ELO better than CNN
AlphaGo.

o 600 ELO difference is
~ 96% win rate. Much
Better!
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ResNet

=

o ResNet helps Alphago-Master achieves 60-0 against human
professionals, beating Ke Jie and the union team of 5 other
top professionals.



ResNeXt

256-din

256-din

‘ 256, 1x1, 64 ‘ ‘ 256, 1x1,4 ‘ ‘ 256,1x1,4 |\i0i32 | 256,1x1,4
¥ = = paths =

‘ 64,3x3, 64 ‘ ‘ 4,3x3,4 H 4,3x3,4 ‘ 4,3x3,4 ‘
E2

¥
‘ 4,1x1,256 ‘

‘ 64, 1x1, 256 ‘ ‘ 4,1x1,256 ‘ ‘ 4,1x1, 256 ‘

256-d out

256-d out

Left: Resnet Block, Right: ResNeXt Block

o ResNeXt (Saining Xie, Ross Girshick, Piotr Dollr, Zhuowen
Tu, Kaiming He, 2016) is the runner-up of 2016 ILSVRC.

o Instead of layer by layer convolution, the convolution forms
various paths in ResNeXt models.

o Group Convolution reduces calculation complexity/number of
parameters while still preserving representational information.
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ResNeXt

o Group Convolution: Convolution by groups.

o Convolution:
Oip = (> MLP(0ip-1)K(iyp + bp) + Oip-1, (Resnet)

JEN;
(11)
Assume group = n, O; 1 = concat(Oj p—-11, ..., Oi p—1,n)
(separation to n groups)

Oipm = f(z MLP(O; p-1,m)K(j.iy.p.m + bp1) (12)
JEN;

O,‘7p = COHC&t(O;VP,l, O,'7p72, ey O,'7p7n) + Oi7p_1, (ResNeXt)
(13)
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ResNeXt

256-din 256-din

256,1x1,4

256,1x1,4

256,1x1,4 256, 1x1,4 256, 1x1,128

] total 32|
; > £2 paths 3
' l 4,3x3,4 ‘ ‘ 4,33,4 ‘ ‘ 4,3x3,4 4,3x3,4 ‘ 128,365,128
* anatarate | group =32
[ama.256 | | concatenate |

128, 1x1,256 128, 1x1, 256

256-d out 256-d out 256-d out

Equivalent ResNeXt structures

©

ResNeXt can be viewed as
o (a).sum of 32-path, 256-dimensional convolution
o (b).concatenation of 32-path, 4-dimensional convolution
o (c).group convolution with group=32
Three views are Equivalent!
ResNeXt-101 single model has an error rate of 0.053 on
ILSVRC. (0.030 when ensembled)

©
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ShuffleNet

IS hannel S K hannel S K hannel =

| ] |

GConv1

Feature I I O O \ [
VOSSR v ETTETLET L G

GConv2 Shuffle

Output

(a) (b) ©

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and
output channels are fully related when GConv?2 takes data from different groups after GConvl; c) an equivalent implementation to b) using
channel shuffle.

o ShuffleNet (Zhang et al., 2017) adds channel shuffle on top of
ResNeXt.
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ShuffleNet

1x1 Conv 1x1 GConv.

BN ReLU

1x1 GConv

BN ReLU
BN ReLU

Channel Shuffle Channel Shuffle

3x3 AVG Pool
SRl v (stride =2) e
X onv
BN ReLU 3x3 DWConv. (stride =2)
BN
BN
Add
 RelU y ReLU
(@) (0) ©
Figure 2. Units. a) unit [7] with depthwi ion (DWConv) [7, 12]; b) ShuffleNet unit with pointwise group

convolution (GConv) and channel shuffle; ¢) ShuffleNet unit with stride = 2.

o The channel shuffle helps increase the efficiency of group
convolution.

o Shufflenet performs better than ResNeXt when restricting the
number of parameters/flops to be small.

o This enables real-world application on mobile devices.
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DenseNet

Input

Dense Block 3

==

Dense Block 2

=

Dense Block 1

Prediction
=

Y

-+

o Instead of only connecting with the previous layer, DenseNet
collects information from all previous layers inside a dense
block.

o The densely connected property makes sense and
DenseNet-161 (k=48) single model achieves 0.053 error rate

on ILSVRC.
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DenseNet

o DenseNet:

o Convolution:

Oip = (D MLP(0ip-1)K(i),p + bp) + Oip1, (ResNet)

JEN;
(14)
O; p = concat(0; p—1, f(z MLP(O; p-1)K(j,iy,ptbp)), (DenseNet)
JEN;
(15)

o The structure of DenseNet can be viewed as concatenating
the feature representation of a new layer to the feature
representation of the previous layer.
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CondenseNet

Input Selected and Output
Features Rearranged Features Features

|
Condensing Stage 1 l Condensing Stage 2 I Optimization Stage I Testing l

o CondenseNet (Liu et al. 2018) is the group convolution
version of DenseMet.

o Due to the property of DenseNet (features come from all
previous layers, two channels come from different stages of the
network), naive group convolution doesn't work.

o Thus need to learn the best way to group.
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CondenseNet

0.5 0.10
—— Training Loss
—— Learning Rate
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2 2
=5 £
T 02 0.04 §
0.1 “|condensing: Condensing Condensing r0.02
Stage1 | Stage2 ' Stage3
0.0 0.00
0 50 100 150 200 250 300
Epoch

Figure 4. The cosine shape learning rate and a typical training loss
curve with a condensation factor of C'=4.

o Remove edges with low activation (smallest L1-norm on edge
weight) repeatedly during training, until the model size is
small enough.

o Finally, forms a group convolution structure for inference.

o CondenseNet performs better than DenseNet and Shufflenet

under same number of parameters/flops. -



SENet

: U P T ;
v pd N\ 7,
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]
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Figure 1: A Squeeze-and-Excitation block.

o The SENet (Squeeze and Excitation Networks) (Jie Hu, Li
Shen, Samuel Albanie, Gang Sun, Enhua Wu, 2018) is the last
winner of ILSVRC classification task.

o ldea: All channels are created unequal, and shall be assigned
different weights.
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SENet

Squeeze-and-Excitation Block: Weight the channels!
How to weight? Global average pooling

Given feature representations of the current layer
F: Hx W x C, do global average pooling G:1x1x C

1
Gk = Z Fij
ij
Use an MLP to determine the weight of each channel.
Wy = MLP(Gk)

/ - .
ik = FijxWi, Vi, j, k

Use F’ as the output of the current layer.

(16)

(17)
(18)
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SENet

o The Squeeze-and-Excitation block

can be adopted in
Inception/Resnet architectures.

o A single SENet-154 model achieves
0.038 top-5(0.174 top-1) error rate
on ILSVRC dataset. (When
ensembled this goes to 0.0225)

SE-Inception Module

Fig. 2. The schema of the original Inception module (left) and the SE-
Inception module (right).

Fig. 3. The schema of the original Residual module (left) and the SE-
ResNet module (right).
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SKnet
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Figure 1. Selective Kernel Convolution.

o SKnet(Selective Kernel network) (Xiang Li, Wenhai Wang,
Xiaolin Hu, Jian Yang, 2019) is a recent enhancement of
SENet.

o Not only channels, but also kernels are created unequal.

o SKnet adopts different weights on different kernels using
attention mechanism. Performs slightly better than SENet.
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NasNet-AutoML

o CNNs structures are becoming more and more complicated.
o Relies on personalized experiences to find useful CNN
architectures.

o ldea: automatically learn CNN architectures. NasNet(Neural
Architecture Search Networks)(Zoph et al. 2017)

Sample architecture A
with probability p

A J

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

Scale gradient of p by R
to update the controller

The Neural Architecture Search Framework
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NasNet-AutoML

o The NasNet searches a best
architecture (best
Normal/Reduction cell
structure) on a small dataset
(Cifar-10), and transfers the

" o] learned structure to a large

dataset (ImageNet).

Softmax

m x
Reduction Cell
ormat el

o The transfer learning process
avoids doubts of overfitting
_— to a certain dataset.

CIFARLO
Architecture Archite

NasNet Architecture
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© ©6 ©6 0 ©

o NasNet Algorithm

NasNet-AutoML

o For each cell, the input hidden state is h;, h;; from two

previous cells.

©

states created in previous blocks.

© 0 0 o

create a new hidden state.

o Available Operations

identity

3x3 max pooling
3x3 average pooling
5x5 max pooling

1x1 convolution

© 06 06 0 ©

3x3 depthwise-separable conv
7x7 depthwise-separable conv
1x3 then 3x1 convolution
1x7 then 7x1 convolution

5x5 depthwise-seperable conv

1.Select a hidden state from h;, h;_; or from the set of hidden

2.Select a second hidden state from the same options as in 1.
3.Select an operation to apply to the hidden state selected in 1.
4 Select an operation to apply to the hidden state selected in 2.
5. Select a method to combine the outputs of 3 and 4 to

Q@ 7x7 max pooling
@ 3x3 convolution

O 3x3 dilated convolution
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NasNet-AutoML

g g Solect one [ ’
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Figure 3. Controller model architecture for recursively constructing one block of a convolutional cell. Each block requires selecting 5
discrete parameters, each of which corresponds to the output of a softmax layer. Example constructed block shown on right. A convolu-
tional cell contains B blocks, hence the controller contains 5B softmax layers for predicting the architecture of a convolutional cell. In our
experiments, the number of blocks B is 5.

o The NasNet samples and evaluates decisions using the output
of the softmax classifiers from a controller RNN.
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NasNet-AutoML

Normal Cell Reduction Cell

The searched best Normal Cell and Reduction Cell on Cifar-10.

o The NasNet finally gets a searched best structure on cifar-10
for Normal and Reduction cells, illustrated above.

o A single NasNet model gets 0.038 top-5 error rate on ILSVRC
classification dataset.
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Outline

(8) Detection Networks
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ILSVRC Detection Task

person | -
person

flower pot
helmet

power drill & 2 _
e motorcycle

o In year 2013, ILSVRC first introduces the object detection
task.

o Participants are required to detect all objects on an image and
label them.

o This challenge is much harder than classification.
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[ILSVRC Detection 2013 & 2014

o The winner of 2013,UvA-EuVision achieves MAP=0.226 using
non-CNN methods (SIFT+selective search), and use a CNN to
compute the prior for the presence of an object in the image.

o The winner of 2014, NUS, combines NIN with kernel

regression, SVM and data augmentation techniques, and
achieve MAP=0.372.

83 /94



R-CNN

R-CNN: Regions with CNN features

aercvplsuu:7 no.

H] warped region

1. I_nput 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

o Ross Girshick introduced R-CNN (Region Proposal CNN)
(Girshick et al., 2013).

o R-CNN uses traditional method to extract region proposals,

then use Alexnet to extract features for these region
proposals, and use a category-specific SVM to classify
whether a region correspond to an item or not.

o MAP=0.314 on ILSVRC detection dataset.
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Fast R-CNN

Outputs: b b oX

softmax regressor
—— ———

Rol feature

vector For each Rol

o Fast R-CNN (Ross Girshick, 2015) lets the input image passes
through a CNN (VGG-16) first, then examine on region of
interests. Thus the image has to pass through the CNN only
once instead of once for every region proposal.

o Different from R-CNN, Fast R-CNN is trained end-to-end, and
learns the accurate bounding box itself.
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Faster R-CNN

[ ks | = anchorboxes

EETY _ = %
L]

t intermediate layer

Figure 1: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals
on PASCAL VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

sliding window.

cony feature map

o Faster R-CNN (Ren et al., 2015) is a revolutionary work on
object detection, for it takes the idea that the feature
representations of CNNs (VGG-16) can not only be used to
classify objects, but also be used to learn the Rol(region of
interests) much more efficiently and effectively.

86 /94



Faster R-CNN

. classifier

feature maps

conv layers I

T 77—

o Instead of 2,000 region proposals in R-CNN from traditional
methods, faster R-CNN only generates 9 ROIs per image.

o However, faster R-CNN get MAP=0.621 on ILSVRC detection
task, and wins the ILSVRC 2015 detection competition.
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Mask R-CNN

region
(7 proposal egions
Rol
FC
‘ alos Layers

ONN  ———feature maps————>

conv. conv. mask

o Mask R-CNN (He et al., 2017) adds a mask branch besides the
classification and bounding box regressor.

o The mask is used to mask out the object (For each Rol we create a
mask, target=1 if there exist an object on that pixel, target=0
otherwise).

@ The mask branch forces the model to learn finer spatial information
of the object. Therefore the performance is increased even if we
don't use the mask branch in inference.
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ILSVRC Detection 2016 & 2017

o The winner of 2016, CUImage achieves MAP=0.663 using
ensembled methods of fast R-CNN and some other methods.

o The winner of 2017, BDAT, achieves MAP=0.731 using an
ensemble of lots of methods.

o The ILSVRC detection dataset is not as influential as the
image classification dataset. Currently researchers working on
image classification still prefers Imagenet/ILSVRC, but
researchers working on object detection prefers the COCO
dataset, which is larger and more representative,
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© Summary
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Summary of CNNs

Scale up neural networks to process very large images / video
sequences

o Sparse connections
o Parameter sharing
Automatically generalize across spatial translations of input

Applicable to any input that is laid out on a grid
(1D,2D,3D,---)

The implementation of CNN is a revolution in the subject of
computer vision.

The implementation of AlexNet lowers ImageNet top-5 error
rate from 0.26 to 0.15.

Many modern variations of CNN structures and their
ensembles further lowers this error rate to 0.0225, surpassing
human level(error rate=0.051). Even single model can achieve
0.038 error rate.
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Summary of CNNs
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Summary of CNNs

o Finally, researchers develop AutoML to automatically search
CNN structures.

o Within 5 years, CNN revolutionized the image classification
field. Now even a small CNN inside your cell phone may do
facial recognition/image classification better than you.

o We also briefly introduced CNN implementations on object
detection. During 4 years of ILSVRC detection competition,
the winner performance grows from 0.226 MAP to 0.731
MAP.
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Thanks.

HP: http://keg.cs.tsinghua.edu.cn/jietang/
Email: jietang@tsinghua.edu.cn
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