
Reinforcement Learning

Hang Su
suhangss@tsinghua.edu.cn
http://www.suhangss.me

State Key Lab of Intelligent Technology & Systems
Tsinghua University

Nov 4th, 2019

Sequential Decision Making
Goal: select actions to maximize total future reward
Actions may have long term consequences
Reward may be delayed
It may be better to sacrifice immediate reward to gain more
long-term reward

Learning and Planning
Two fundamental problems in sequential decision making
Reinforcement Learning:
q The environment is initially unknown
q The agent interacts with the environment
q The agent improves its policy

Planning:
q A model of the environment is known
q The agent performs computations with its model (without any

external interaction)
q The agent improves its policy via reasoning, search, etc.

Atari Example: Planning
Rules of the game are known
Can query emulator
q perfect model inside agent’s brain

If I take action a from state s:
q what would the next state be?
q what would the score be?

Plan ahead to find optimal policy
q e.g. tree search

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Planning

Rules of the game are known

Can query emulator
perfect model inside agent’s brain

If I take action a from state s:
what would the next state be?
what would the score be?

Plan ahead to find optimal policy
e.g. tree search

right left

right rightleft left

Atari Example: Reinforcement Learning

Rules of the game are unknown
Learn directly from interactive game-play
Pick actions on joystick, see pixels and
scores

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Reinforcement learning
Intelligent animals can learn from interactions to
adapt to the environment

Can computers do similarly?

Reinforcement Learning in a nutshell
RL is a general-purpose framework for decision-making
q RL is for an agent with the capacity to act
q Each action influences the agent’s future state

Success is measured by a scalar reward signal
q Goal: select actions to maximize future reward

Reinforcement Learning
The history is the sequence of observations, actions, rewards

q Agent chooses actions so as to maximize expected cumulative
reward over a time horizon

q Observations can be vectors or other structures
q Actions can be multi-dimensional
q Rewards are scalar but can be arbitrarily information

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

History and State

The history is the sequence of observations, actions, rewards

Ht = O1,R1,A1, ...,At�1,Ot ,Rt

i.e. all observable variables up to time t

i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
The agent selects actions
The environment selects observations/rewards

State is the information used to determine what happens next

Formally, state is a function of the history:

St = f (Ht)

Agent and Environment

The environment:
q Receives action 𝑎"
q Emits state 𝑠"
q Emits scalar reward 𝑟"

At each step t the agent:
q Receives state 𝑠"
q Receives scalar reward 𝑟"
q Executes action 𝑎"

Agent and Environment

state

reward

action

at

rt

st I At each step t the agent:
I Receives state st
I Receives scalar reward rt
I Executes action at

I The environment:
I Receives action at
I Emits state st
I Emits scalar reward rt

State

Experience is a sequence of observations, actions, rewards

The state is a summary of experience

In a fully observed environment

State

I Experience is a sequence of observations, actions, rewards

o1, r1, a1, ..., at�1, ot , rt

I The state is a summary of experience

st = f (o1, r1, a1, ..., at�1, ot , rt)

I In a fully observed environment

st = f (ot)

State

I Experience is a sequence of observations, actions, rewards

o1, r1, a1, ..., at�1, ot , rt

I The state is a summary of experience

st = f (o1, r1, a1, ..., at�1, ot , rt)

I In a fully observed environment

st = f (ot)

State

I Experience is a sequence of observations, actions, rewards

o1, r1, a1, ..., at�1, ot , rt

I The state is a summary of experience

st = f (o1, r1, a1, ..., at�1, ot , rt)

I In a fully observed environment

st = f (ot)

State

I Experience is a sequence of observations, actions, rewards

o1, r1, a1, ..., at�1, ot , rt

I The state is a summary of experience

st = f (o1, r1, a1, ..., at�1, ot , rt)

I In a fully observed environment

st = f (ot)

Major Components of an RL Agent
An RL agent may include one or more of these components:
q Policy: agent’s behavior function
q Value function: how good is each state and/or action
q Model: agent’s representation of the environment

Policy
A policy is the agent’s behavior
It is a map from state to action, e.g

Deterministic policy：

Stochastic policy:

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Policy

A policy is the agent’s behaviour

It is a map from state to action, e.g.

Deterministic policy: a = ⇡(s)

Stochastic policy: ⇡(a|s) = P[At = a|St = s]

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Policy

A policy is the agent’s behaviour

It is a map from state to action, e.g.

Deterministic policy: a = ⇡(s)

Stochastic policy: ⇡(a|s) = P[At = a|St = s]

Value Function
Value function is a prediction of future reward
Used to evaluate the goodness/badness of states
Q-value function gives expected total reward
q from state s and action a
q under policy π
q with discount factor γ

Value functions decompose into a Bellman equation

Value Function

I A value function is a prediction of future reward
I “How much reward will I get from action a in state s?”

I Q-value function gives expected total reward
I from state s and action a
I under policy ⇡
I with discount factor �

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + ... | s, a

⇤

I Value functions decompose into a Bellman equation

Q⇡(s, a) = Es0,a0
⇥
r + �Q⇡(s 0, a0) | s, a

⇤

Value Function

I A value function is a prediction of future reward
I “How much reward will I get from action a in state s?”

I Q-value function gives expected total reward
I from state s and action a
I under policy ⇡
I with discount factor �

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + ... | s, a

⇤

I Value functions decompose into a Bellman equation

Q⇡(s, a) = Es0,a0
⇥
r + �Q⇡(s 0, a0) | s, a

⇤

Model
A model predicts what the environment will do next

predicts the next state
predicts the next (immediate) reward, e.g.

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Model

A model predicts what the environment will do next

P predicts the next state

R predicts the next (immediate) reward, e.g.

Pa
ss0 = P[St+1 = s 0 | St = s,At = a]

Ra
s = E [Rt+1 | St = s,At = a]

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Model

A model predicts what the environment will do next

P predicts the next state

R predicts the next (immediate) reward, e.g.

Pa
ss0 = P[St+1 = s 0 | St = s,At = a]

Ra
s = E [Rt+1 | St = s,At = a]

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Model

A model predicts what the environment will do next

P predicts the next state

R predicts the next (immediate) reward, e.g.

Pa
ss0 = P[St+1 = s 0 | St = s,At = a]

Ra
s = E [Rt+1 | St = s,At = a]

Reinforcement Learning

Agent’s inside:

Agent’s goal: learn a policy to maximize long-term total reward

Difference between RL and SL?
Both learn a model ...
supervised learning reinforcement learning

VALSE 2017
�����
 .nju.edu.cn

Difference between RL and SL?

supervised learning
both learn a model ...

reinforcement learning
environment

data
(x,y)
(x,y)
(x,y)
...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

algorithm algorithm

environment

model model

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

data
s,a,s,r,a,s,r,  
s,a,s,r,a,s,r,
s,a,s,r,a,s,r,

...

open loop
learning from labeled data
passive data

closed loop
learning from delayed reward
explore environment

VALSE 2017
�����
 .nju.edu.cn

Difference between RL and SL?

supervised learning
both learn a model ...

reinforcement learning
environment

data
(x,y)
(x,y)
(x,y)
...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

algorithm algorithm

environment

model model

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

data
s,a,s,r,a,s,r,  
s,a,s,r,a,s,r,
s,a,s,r,a,s,r,

...

open loop
learning from labeled data
passive data

closed loop
learning from delayed reward
explore environment

open loop
learning from labeled data
passive data

closed loop
learning from delayed reward explore
environment

Supervised Learning
Spam detection based on supervised learning

Reinforcement Learning
Spam detection based on reinforcement learning

Characteristics of Reinforcement Learning
What makes reinforcement learning different from other
machine learning paradigms?
q There is no supervisor
q Only a reward signal
q Feedback is delayed, not instantaneous
q Time really matters (sequential, non i.i.d data)
q Agent’s actions affect the subsequent data it receives

RL vs SL (Supervised Learning)

Differences from SL
q Learn by trial-and-error

� Need exploration/exploitation
trade-off

q Optimize long-term reward
� Need temporal credit assignment

Similarities to SL
q Representation
q Generalization
q Hierarchical problem solving
q …

Applications: The Atari games
n Deepmind Deep Q-learning on Atari

¨ Mnih et al. Human-level control through deep reinforcement learning.
Nature, 518(7540): 529-533, 2015

Applications: The game of Go
n Deepmind Deep Q-learning on Go

¨ Silver et al. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587): 484−489, 2016

Application: Producing flexible behaviors
n NIPS 2017: Learning to Run competition

More applications
Search
Recommendation system
Stock prediction

every decision changes the world

Generality of RL
shortest path problem
q Dijkstra's algorithm, Bellman–Ford algorithm, etc

by reinforcement learning

VALSE 2017
�����
 .nju.edu.cn

Generality of RL

• every node is a state, an action is an edge out
• reward function = the negative edge weight
• optimal policy leads to the shortest path

by reinforcement learning

-2

-1

-1

-6
-3

-1
-5

-3
-5

-2s t 100 0

shortest path problem:

2

1

1

6
3

1
5

3
5

2s t

VALSE 2017
�����
 .nju.edu.cn

Generality of RL

• every node is a state, an action is an edge out
• reward function = the negative edge weight
• optimal policy leads to the shortest path

by reinforcement learning

-2

-1

-1

-6
-3

-1
-5

-3
-5

-2s t 100 0

shortest path problem:

2

1

1

6
3

1
5

3
5

2s t

• every node is a state, an action is an edge out
• reward function = the negative edge weight
• optimal policy leads to the shortest path

More applications
Also as an differentiable approach for structure learning

VALSE 2017
�����
 .nju.edu.cn

More applications
Also as an differentiable approach for

modeling structure data

[Bahdanau et al., An Actor-Critic Algorithm for Sequence Prediction. ArXiv 1607.07086]
[He et al., Deep Reinforcement Learning with a Natural Language Action Space, ACL’16]
[B. Dhingra et al., End-to-End Reinforcement Learning of Dialogue Agents for Information Access,
ArXiv 1609.00777]
[Yu et al., SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, AAAI’17]
...

[Bahdanau et al., An Actor-Critic Algorithm for Sequence Prediction. ArXiv 1607.07086]
[He et al., Deep Reinforcement Learning with a Natural Language Action Space, ACL’16]
[B. Dhingra et al., End-to-End Reinforcement Learning of Dialogue Agents for Information
Access, ArXiv 1609.00777]
[Yu et al., SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, AAAI’17]

(Partial) History...
Idea of programming a computer to learn by trial and error (Turing,
1954）
SNARCs (Stochastic Neural-Analog Reinforcement Calculators)
(Minsky, 1951)
Checkers playing program (Samuel, 59)
Lots of RL in the 60s (e.g., Waltz & Fu 65; Mendel 66; Fu 70)
MENACE (Matchbox Educable Naughts and Crosses Engine
(Mitchie, 63)
RL based Tic Tac Toe learner (GLEE) (Mitchie 68)
Classifier Systems (Holland, 75)
Adaptive Critics (Barto & Sutton, 81)
Temporal Differences (Sutton, 88)

Outline
Markov Decision Process

Value-based methods

Policy search

Model-based method

Deep reinforcement learning

History and State
The history is the sequence of observations, actions, rewards

all observable variables up to time t
What happens next depends on the history:
q The agent selects actions
q The environment selects observations/rewards

State is the information used to determine what happens
next
Formally, state is a function of the history:

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

History and State

The history is the sequence of observations, actions, rewards

Ht = O1,R1,A1, ...,At�1,Ot ,Rt

i.e. all observable variables up to time t

i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
The agent selects actions
The environment selects observations/rewards

State is the information used to determine what happens next

Formally, state is a function of the history:

St = f (Ht)

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

History and State

The history is the sequence of observations, actions, rewards

Ht = O1,R1,A1, ...,At�1,Ot ,Rt

i.e. all observable variables up to time t

i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
The agent selects actions
The environment selects observations/rewards

State is the information used to determine what happens next

Formally, state is a function of the history:

St = f (Ht)

Agent State
The agent state is the agent’s
internal representation
whatever information the agent
uses to pick the next action
it is the information used by
reinforcement learning
algorithms
It can be any function of history:

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Agent State

observation

reward

action

At

Rt

Ot

St
aagent state

The agent state Sa
t is the

agent’s internal
representation

i.e. whatever information
the agent uses to pick the
next action

i.e. it is the information
used by reinforcement
learning algorithms

It can be any function of
history:

Sa
t = f (Ht)

S
a
t = f(Ht)

Sa
t

Markov state
An Markov state contains all useful information from the
history.

“The future is independent of the past given the present”

Once the state is known, the history may be thrown away
The state is a sufficient statistic of the future

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

Definition

A state St is Markov if and only if

P[St+1 | St] = P[St+1 | S1, ..., St]

“The future is independent of the past given the present”

H1:t ! St ! Ht+1:1

Once the state is known, the history may be thrown away
i.e. The state is a su�cient statistic of the future
The environment state Se

t is Markov
The history Ht is Markov

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

Definition

A state St is Markov if and only if

P[St+1 | St] = P[St+1 | S1, ..., St]

“The future is independent of the past given the present”

H1:t ! St ! Ht+1:1

Once the state is known, the history may be thrown away
i.e. The state is a su�cient statistic of the future
The environment state Se

t is Markov
The history Ht is Markov

Introduction to MDPs
Markov decision processes formally describe an environment
for reinforcement learning
Where the environment is fully observable
q i.e. The current state completely characterizes the process

Almost all RL problems can be formalized as MDPs
q Optimal control primarily deals with continuous MDPs
q Partially observable problems can be converted into MDPs
q Bandits are MDPs with one state

Markov Property
“The future is independent of the past given the present”

The state captures all relevant information from the history
Once the state is known, the history may be thrown away
q The state is a sufficient statistic of the future

Lecture 2: Markov Decision Processes

Markov Processes

Markov Property

Markov Property

“The future is independent of the past given the present”

Definition

A state St is Markov if and only if

P [St+1 | St] = P [St+1 | S1, ..., St]

The state captures all relevant information from the history

Once the state is known, the history may be thrown away

i.e. The state is a su�cient statistic of the future

Markov Decision Process
A Markov reward process is a Markov chain with values
A Markov decision process (MDP) is a Markov reward
process with decisions.

Lecture 2: Markov Decision Processes

Markov Decision Processes

MDP

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple hS, A, P, R, �i

S is a finite set of states

A is a finite set of actions

P is a state transition probability matrix,
P

a
ss0 = P [St+1 = s 0 | St = s,At = a]

R is a reward function, R
a
s = E [Rt+1 | St = s,At = a]

� is a discount factor � 2 [0, 1].

RL in MDP
Observe initial state s1

For t = 1,2,3,...
q Choose action at based on st and current policy
q Observe reward rt and next state st+1

q Update policy using new information(st,at,rt,st+1)

Episode length may be finite or infinite
Agent can have multiple episodes starting from new initial
states

Solving the optimal policy in MDP
Given MDP model, we can compute an optimal policy as
Value-based RL
q Estimate the optimal value function Q∗(s,a)
q This is the maximum value achievable under any policy
Policy-based RL
q Search directly for the optimal policy π∗

q This is the policy achieving maximum future reward
Model-based RL
q Build a model of the environment
q Plan (e.g. by look ahead) using model
What if R and P are unknown?
q This is what reinforcement learning is about!

Policy Evaluation
Q: what is the total reward of a policy?
state value function

state-action value function

Consequently

VALSE 2017
�����
 .nju.edu.cn

Policy evaluation

Q: what is the total reward of a policy?

state value function

state-action value function

V ⇡(s) =
X

a

⇡(a|s)Q(s, a)

V ⇡(s) = E[
XT

t=1
rt|s]

Q⇡(s, a) = E[
XT

t=1
rt|s, a] =

X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

consequently,
VALSE 2017
�����
 .nju.edu.cn

Policy evaluation

Q: what is the total reward of a policy?

state value function

state-action value function

V ⇡(s) =
X

a

⇡(a|s)Q(s, a)

V ⇡(s) = E[
XT

t=1
rt|s]

Q⇡(s, a) = E[
XT

t=1
rt|s, a] =

X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

consequently,

Solving the optimal policy in MDP
idea:
q how is the current policy policy evaluation

q improve the current policy policy improvement

policy iteration:
q policy evaluation: backward calculation

q policy improvement

q value iteration:

VALSE 2017
�����
 .nju.edu.cn

Solving the optimal policy in MDP
idea:

how is the current policy
improve the current policy

policy evaluation
policy improvement

policy evaluation: backward calculation
V ⇡(s) =

X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇡(s0)

�

policy improvement:
V (s) max

a
Q⇡(s, a)

from the Bellman optimality equation

policy iteration:policy iteration:policy iteration:

Vt+1(s) = max
a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s)

�value iteration:

VALSE 2017
�����
 .nju.edu.cn

Solving the optimal policy in MDP
idea:

how is the current policy
improve the current policy

policy evaluation
policy improvement

policy evaluation: backward calculation
V ⇡(s) =

X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇡(s0)

�

policy improvement:
V (s) max

a
Q⇡(s, a)

from the Bellman optimality equation

policy iteration:policy iteration:policy iteration:

Vt+1(s) = max
a

X

s0

P (s0|s, a)
�
R(s, a, s0) + �Vt(s)

�value iteration:

Optimal Value Functions

I An optimal value function is the maximum achievable value

Q⇤(s, a) = max
⇡

Q⇡(s, a) = Q⇡⇤
(s, a)

I Once we have Q⇤ we can act optimally,

⇡⇤(s) = argmax
a

Q⇤(s, a)

I Optimal value maximises over all decisions. Informally:

Q⇤(s, a) = rt+1 + � max
at+1

rt+2 + �2 max
at+2

rt+3 + ...

= rt+1 + � max
at+1

Q⇤(st+1, at+1)

I Formally, optimal values decompose into a Bellman equation

Q⇤(s, a) = Es0


r + � max

a0
Q⇤(s 0, a0) | s, a

�

Optimal Value Functions

I An optimal value function is the maximum achievable value

Q⇤(s, a) = max
⇡

Q⇡(s, a) = Q⇡⇤
(s, a)

I Once we have Q⇤ we can act optimally,

⇡⇤(s) = argmax
a

Q⇤(s, a)

I Optimal value maximises over all decisions. Informally:

Q⇤(s, a) = rt+1 + � max
at+1

rt+2 + �2 max
at+2

rt+3 + ...

= rt+1 + � max
at+1

Q⇤(st+1, at+1)

I Formally, optimal values decompose into a Bellman equation

Q⇤(s, a) = Es0


r + � max

a0
Q⇤(s 0, a0) | s, a

�

Optimal Value Functions

I An optimal value function is the maximum achievable value

Q⇤(s, a) = max
⇡

Q⇡(s, a) = Q⇡⇤
(s, a)

I Once we have Q⇤ we can act optimally,

⇡⇤(s) = argmax
a

Q⇤(s, a)

I Optimal value maximises over all decisions. Informally:

Q⇤(s, a) = rt+1 + � max
at+1

rt+2 + �2 max
at+2

rt+3 + ...

= rt+1 + � max
at+1

Q⇤(st+1, at+1)

I Formally, optimal values decompose into a Bellman equation

Q⇤(s, a) = Es0


r + � max

a0
Q⇤(s 0, a0) | s, a

�

An optimal value function is the maximum achievable value

Once we have Q∗ we can act optimally,

Optimal value maximizes over all decisions.

Formally, optimal values decompose into a Bellman equation

Optimal Value Functions

Optimal Value Functions

I An optimal value function is the maximum achievable value

Q⇤(s, a) = max
⇡

Q⇡(s, a) = Q⇡⇤
(s, a)

I Once we have Q⇤ we can act optimally,

⇡⇤(s) = argmax
a

Q⇤(s, a)

I Optimal value maximises over all decisions. Informally:

Q⇤(s, a) = rt+1 + � max
at+1

rt+2 + �2 max
at+2

rt+3 + ...

= rt+1 + � max
at+1

Q⇤(st+1, at+1)

I Formally, optimal values decompose into a Bellman equation

Q⇤(s, a) = Es0


r + � max

a0
Q⇤(s 0, a0) | s, a

�

Value Function Approximation
So far we have represented value function
q Every state s has an entry V(s)
q every state-action pair (s,a) has an entry Q(s,a)

Problem with large MDPs:
q There are too many states and/or actions to store in memory
q It is too slow to learn the value of each state individually

Solution for large MDPs:
q Estimate value function with function approximation

q Generalize from seen states to unseen states

Lecture 6: Value Function Approximation

Introduction

Value Function Approximation

So far we have represented value function by a lookup table

Every state s has an entry V (s)
Or every state-action pair s, a has an entry Q(s, a)

Problem with large MDPs:
There are too many states and/or actions to store in memory
It is too slow to learn the value of each state individually

Solution for large MDPs:
Estimate value function with function approximation

v̂(s,w) ⇡ v⇡(s)

or q̂(s, a,w) ⇡ q⇡(s, a)

Generalise from seen states to unseen states
Update parameter w using MC or TD learning

Q-Networks
Approximate the action-value function

Q-Networks

Represent value function by Q-network with weights w

Q(s, a,w) ⇡ Q⇤(s, a)

s sa

Q(s,a,w) Q(s,a1,w) Q(s,am,w)…

w w

• Minimize mean-squared error between
approximate and true action-value

• Use stochastic gradient descent to find a local
minimum

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Action-Value Function Approximation

Approximate the action-value function

q̂(S ,A,w) ⇡ q⇡(S ,A)

Minimise mean-squared error between approximate
action-value fn q̂(S ,A,w) and true action-value fn q⇡(S ,A)

J(w) = E⇡
⇥
(q⇡(S ,A)� q̂(S ,A,w))2

⇤

Use stochastic gradient descent to find a local minimum

�1

2
rwJ(w) = (q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

�w = ↵(q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Action-Value Function Approximation

Approximate the action-value function

q̂(S ,A,w) ⇡ q⇡(S ,A)

Minimise mean-squared error between approximate
action-value fn q̂(S ,A,w) and true action-value fn q⇡(S ,A)

J(w) = E⇡
⇥
(q⇡(S ,A)� q̂(S ,A,w))2

⇤

Use stochastic gradient descent to find a local minimum

�1

2
rwJ(w) = (q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

�w = ↵(q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Action-Value Function Approximation

Approximate the action-value function

q̂(S ,A,w) ⇡ q⇡(S ,A)

Minimise mean-squared error between approximate
action-value fn q̂(S ,A,w) and true action-value fn q⇡(S ,A)

J(w) = E⇡
⇥
(q⇡(S ,A)� q̂(S ,A,w))2

⇤

Use stochastic gradient descent to find a local minimum

�1

2
rwJ(w) = (q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

�w = ↵(q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

Simple MDP: Shortest Path Problem

Principle of Optimality (Richard Bellman, 1957)
q An optimal policy has the property that whatever the initial

state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision.

Simple MDP: (Deterministic) Shortest Path Problem

8i : CostToGo(i) = min
j2Neighbor(i)

{cost(i ! j) + CostToGo(j)}

Principle of Optimality (Richard Bellman, 1957)

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.

15

Simple MDP: (Deterministic) Shortest Path Problem

8i : CostToGo(i) = min
j2Neighbor(i)

{cost(i ! j) + CostToGo(j)}

Principle of Optimality (Richard Bellman, 1957)

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.

15

Bellmen Equations for MDPs
More General Case: Bellmen Equations for MDPs

Deterministic

shortest

path

Markov

decision

process

CostToGo(i) = min
j2Neighbor(i)

{cost(i ! j) + CostToGo(j)}

V ⇤(s) = max
a2A

�
R(s, a) + �Es0⇠P(·|s,a)[V

⇤(s 0)]

(maximum long-term reward starting from s)

Q⇤(s, a) = R(s, a) + �Es0⇠P(·|s,a)


max
a02A

Q⇤(s 0, a0)

�

(maximum long-term reward after choosing a from s)

V ⇤ and Q⇤ are called optimal value functions

16

Deterministic
shortest path

Markov decision process

More General Case: Bellmen Equations for MDPs

Deterministic

shortest

path

Markov

decision

process

CostToGo(i) = min
j2Neighbor(i)

{cost(i ! j) + CostToGo(j)}

V ⇤(s) = max
a2A

�
R(s, a) + �Es0⇠P(·|s,a)[V

⇤(s 0)]

(maximum long-term reward starting from s)

Q⇤(s, a) = R(s, a) + �Es0⇠P(·|s,a)


max
a02A

Q⇤(s 0, a0)

�

(maximum long-term reward after choosing a from s)

V ⇤ and Q⇤ are called optimal value functions

16

(maximum long-term reward starting from s)

More General Case: Bellmen Equations for MDPs

Deterministic

shortest

path

Markov

decision

process

CostToGo(i) = min
j2Neighbor(i)

{cost(i ! j) + CostToGo(j)}

V ⇤(s) = max
a2A

�
R(s, a) + �Es0⇠P(·|s,a)[V

⇤(s 0)]

(maximum long-term reward starting from s)

Q⇤(s, a) = R(s, a) + �Es0⇠P(·|s,a)


max
a02A

Q⇤(s 0, a0)

�

(maximum long-term reward after choosing a from s)

V ⇤ and Q⇤ are called optimal value functions

16

V* and Q* are called optimal value functions

(maximum long-term reward after choosing a from s)

Policy-Based Reinforcement Learning
Directly parametrize the policy

Start with arbitrary policy π0 : S →A
For k = 0,1,2,...
q Policy evaluation: solve for Qk that satisfies

q Policy improvement:

Lecture 7: Policy Gradient

Introduction

Policy-Based Reinforcement Learning

In the last lecture we approximated the value or action-value
function using parameters ✓,

V✓(s) ⇡ V ⇡(s)

Q✓(s, a) ⇡ Q⇡(s, a)

A policy was generated directly from the value function
e.g. using ✏-greedy

In this lecture we will directly parametrise the policy

⇡✓(s, a) = P [a | s, ✓]

We will focus again on model-free reinforcement learning

Policy Iteration (PI)

Algorithm

• Start with arbitrary policy ⇡0 : S ! A
• For k = 0, 1, 2, . . .

• Policy evaluation: solve for Qk that satisfies

8(s, a) : Qk(s, a) = R(s, a) + �
X

s0

P(s 0|s, a)Qk(s
0,⇡k(s

0))

(Just solving Bellman equation B⇡kQ = Q)

(Just a system of linear equations)

• Policy improvement:

⇡k+1(s) argmax
a

Qk(s, a)

(⇡k+1 is called a greedy policy w.r.t. Qk)

25

Policy Iteration (PI)

Algorithm

• Start with arbitrary policy ⇡0 : S ! A
• For k = 0, 1, 2, . . .

• Policy evaluation: solve for Qk that satisfies

8(s, a) : Qk(s, a) = R(s, a) + �
X

s0

P(s 0|s, a)Qk(s
0,⇡k(s

0))

(Just solving Bellman equation B⇡kQ = Q)

(Just a system of linear equations)

• Policy improvement:

⇡k+1(s) argmax
a

Qk(s, a)

(⇡k+1 is called a greedy policy w.r.t. Qk)

25

Policy Gradient
Let J(θ) be any policy objective function

Policy gradient algorithms search for a local maximum in J(θ)
by ascending the gradient of the policy:

Lecture 7: Policy Gradient

Finite Di↵erence Policy Gradient

Policy Gradient

Let J(✓) be any policy objective function

Policy gradient algorithms search for a
local maximum in J(✓) by ascending the
gradient of the policy, w.r.t. parameters ✓

�✓ = ↵r✓J(✓)

Where r✓J(✓) is the policy gradient

r✓J(✓) =

0

BB@

@J(✓)
@✓1
...

@J(✓)
@✓n

1

CCA

and ↵ is a step-size parameter

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Lecture 7: Policy Gradient

Finite Di↵erence Policy Gradient

Policy Gradient

Let J(✓) be any policy objective function

Policy gradient algorithms search for a
local maximum in J(✓) by ascending the
gradient of the policy, w.r.t. parameters ✓

�✓ = ↵r✓J(✓)

Where r✓J(✓) is the policy gradient

r✓J(✓) =

0

BB@

@J(✓)
@✓1
...

@J(✓)
@✓n

1

CCA

and ↵ is a step-size parameter

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Lecture 7: Policy Gradient

Finite Di↵erence Policy Gradient

Policy Gradient

Let J(✓) be any policy objective function

Policy gradient algorithms search for a
local maximum in J(✓) by ascending the
gradient of the policy, w.r.t. parameters ✓

�✓ = ↵r✓J(✓)

Where r✓J(✓) is the policy gradient

r✓J(✓) =

0

BB@

@J(✓)
@✓1
...

@J(✓)
@✓n

1

CCA

and ↵ is a step-size parameter

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Computing Gradients By Finite Differences
To evaluate policy gradient of πθ(s, a)

For each dimension k ∈ [1, n]
q Estimate kth partial derivative of objective function w.r.t. θ
q By perturbing θ by small amount ε in kth dimension

Uses n evaluations to compute policy gradient in n
dimensions
Simple, noisy, inefficient - but sometimes effective

Lecture 7: Policy Gradient

Finite Di↵erence Policy Gradient

Computing Gradients By Finite Di↵erences

To evaluate policy gradient of ⇡✓(s, a)

For each dimension k 2 [1, n]
Estimate kth partial derivative of objective function w.r.t. ✓
By perturbing ✓ by small amount ✏ in kth dimension

@J(✓)

@✓k
⇡ J(✓ + ✏uk) � J(✓)

✏

where uk is unit vector with 1 in kth component, 0 elsewhere

Uses n evaluations to compute policy gradient in n dimensions

Simple, noisy, ine�cient - but sometimes e↵ective

Works for arbitrary policies, even if policy is not di↵erentiable

Score Function
We now compute the policy gradient analytically
Assume policy πθ is differentiable whenever it is non-zero
Likelihood ratios exploit the following identity

The gradient ∇θπθ(s,a) can be computed using the score
function

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Likelihood Ratios

Score Function

We now compute the policy gradient analytically

Assume policy ⇡✓ is di↵erentiable whenever it is non-zero

and we know the gradient r✓⇡✓(s, a)

Likelihood ratios exploit the following identity

r✓⇡✓(s, a) = ⇡✓(s, a)
r✓⇡✓(s, a)

⇡✓(s, a)

= ⇡✓(s, a)r✓ log ⇡✓(s, a)

The score function is r✓ log ⇡✓(s, a)

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Likelihood Ratios

Score Function

We now compute the policy gradient analytically

Assume policy ⇡✓ is di↵erentiable whenever it is non-zero

and we know the gradient r✓⇡✓(s, a)

Likelihood ratios exploit the following identity

r✓⇡✓(s, a) = ⇡✓(s, a)
r✓⇡✓(s, a)

⇡✓(s, a)

= ⇡✓(s, a)r✓ log ⇡✓(s, a)

The score function is r✓ log ⇡✓(s, a)

Softmax Policy
Softmax policy:
q Weight actions using linear combination of features φ(s,a)⊤θ
Probability of action is proportional to exponentiated weight

The score function is

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Likelihood Ratios

Softmax Policy

We will use a softmax policy as a running example

Weight actions using linear combination of features �(s, a)>✓

Probability of action is proportional to exponentiated weight

⇡✓(s, a) / e�(s,a)>✓

The score function is

r✓ log ⇡✓(s, a) = �(s, a) � E⇡✓ [�(s, ·)]

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Likelihood Ratios

Softmax Policy

We will use a softmax policy as a running example

Weight actions using linear combination of features �(s, a)>✓

Probability of action is proportional to exponentiated weight

⇡✓(s, a) / e�(s,a)>✓

The score function is

r✓ log ⇡✓(s, a) = �(s, a) � E⇡✓ [�(s, ·)]

Gaussian Policy
In continuous action spaces, a Gaussian policy is natural
Mean is a linear combination of state features μ(s) =
φ(s)⊤θ
Variance may be fixed σ2, or can also parametrized

Policy is Gaussian

The score function is

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Likelihood Ratios

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = �(s)>✓

Variance may be fixed �2, or can also parametrised

Policy is Gaussian, a ⇠ N (µ(s), �2)

The score function is

r✓ log ⇡✓(s, a) =
(a � µ(s))�(s)

�2

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Likelihood Ratios

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = �(s)>✓

Variance may be fixed �2, or can also parametrised

Policy is Gaussian, a ⇠ N (µ(s), �2)

The score function is

r✓ log ⇡✓(s, a) =
(a � µ(s))�(s)

�2

Policy Gradient Theorem
Consider a simple class of one-step MDPs
q Starting in state s ∼ d(s)
q Terminating after one time-step with reward r
q Use likelihood ratios to compute the policy gradient

Generalize the likelihood ratio approach to multi-step MDPs
Replaces instantaneous reward r with long-term value Qπ(s,a)

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Policy Gradient Theorem

One-Step MDPs

Consider a simple class of one-step MDPs
Starting in state s ⇠ d(s)
Terminating after one time-step with reward r = Rs,a

Use likelihood ratios to compute the policy gradient

J(✓) = E⇡✓ [r]

=
X

s2S
d(s)

X

a2A
⇡✓(s, a)Rs,a

r✓J(✓) =
X

s2S
d(s)

X

a2A
⇡✓(s, a)r✓ log ⇡✓(s, a)Rs,a

= E⇡✓ [r✓ log ⇡✓(s, a)r]

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Policy Gradient Theorem

One-Step MDPs

Consider a simple class of one-step MDPs
Starting in state s ⇠ d(s)
Terminating after one time-step with reward r = Rs,a

Use likelihood ratios to compute the policy gradient

J(✓) = E⇡✓ [r]

=
X

s2S
d(s)

X

a2A
⇡✓(s, a)Rs,a

r✓J(✓) =
X

s2S
d(s)

X

a2A
⇡✓(s, a)r✓ log ⇡✓(s, a)Rs,a

= E⇡✓ [r✓ log ⇡✓(s, a)r]

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Policy Gradient Theorem

Policy Gradient Theorem

The policy gradient theorem generalises the likelihood ratio
approach to multi-step MDPs

Replaces instantaneous reward r with long-term value Q⇡(s, a)

Policy gradient theorem applies to start state objective,
average reward and average value objective

Theorem

For any di↵erentiable policy ⇡✓(s, a),
for any of the policy objective functions J = J1, JavR , or 1

1�� JavV ,
the policy gradient is

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a) Q
⇡✓(s, a)]

Monte-Carlo Policy Gradient
(REINFORCE)

Update parameters by stochastic gradient ascent
Using policy gradient theorem
Using return vt as an unbiased sample of

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

Update parameters by stochastic gradient ascent
Using policy gradient theorem
Using return vt as an unbiased sample of Q⇡✓(st , at)

�✓t = ↵r✓ log ⇡✓(st , at)vt

function REINFORCE

Initialise ✓ arbitrarily
for each episode {s1, a1, r2, ..., sT�1, aT�1, rT} ⇠ ⇡✓ do

for t = 1 to T � 1 do

✓ ✓ + ↵r✓ log ⇡✓(st , at)vt
end for

end for

return ✓
end function

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

Update parameters by stochastic gradient ascent
Using policy gradient theorem
Using return vt as an unbiased sample of Q⇡✓(st , at)

�✓t = ↵r✓ log ⇡✓(st , at)vt

function REINFORCE

Initialise ✓ arbitrarily
for each episode {s1, a1, r2, ..., sT�1, aT�1, rT} ⇠ ⇡✓ do

for t = 1 to T � 1 do

✓ ✓ + ↵r✓ log ⇡✓(st , at)vt
end for

end for

return ✓
end function

Lecture 7: Policy Gradient

Monte-Carlo Policy Gradient

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

Update parameters by stochastic gradient ascent
Using policy gradient theorem
Using return vt as an unbiased sample of Q⇡✓(st , at)

�✓t = ↵r✓ log ⇡✓(st , at)vt

function REINFORCE

Initialise ✓ arbitrarily
for each episode {s1, a1, r2, ..., sT�1, aT�1, rT} ⇠ ⇡✓ do

for t = 1 to T � 1 do

✓ ✓ + ↵r✓ log ⇡✓(st , at)vt
end for

end for

return ✓
end function

Reducing Variance Using a Critic
Monte-Carlo policy gradient still has high variance
We use a critic to estimate the action-value function

Actor-critic algorithms maintain two sets of parameters
q Critic Updates action-value function parameters w
q Actor Updates policy parameters θ, in direction suggested by

critic
Actor-critic algorithms follow an approximate policy
gradient

Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Reducing Variance Using a Critic

Monte-Carlo policy gradient still has high variance

We use a critic to estimate the action-value function,

Qw (s, a) ⇡ Q⇡✓(s, a)

Actor-critic algorithms maintain two sets of parameters

Critic Updates action-value function parameters w
Actor Updates policy parameters ✓, in direction

suggested by critic

Actor-critic algorithms follow an approximate policy gradient

r✓J(✓) ⇡ E⇡✓ [r✓ log ⇡✓(s, a) Qw (s, a)]

�✓ = ↵r✓ log ⇡✓(s, a) Qw (s, a)

Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Reducing Variance Using a Critic

Monte-Carlo policy gradient still has high variance

We use a critic to estimate the action-value function,

Qw (s, a) ⇡ Q⇡✓(s, a)

Actor-critic algorithms maintain two sets of parameters

Critic Updates action-value function parameters w
Actor Updates policy parameters ✓, in direction

suggested by critic

Actor-critic algorithms follow an approximate policy gradient

r✓J(✓) ⇡ E⇡✓ [r✓ log ⇡✓(s, a) Qw (s, a)]

�✓ = ↵r✓ log ⇡✓(s, a) Qw (s, a)

Bias in Actor-Critic Algorithms
Approximating the policy gradient introduces bias
A biased policy gradient may not find the right solution
Subtract a baseline function B(s) from the policy gradient

So we can rewrite the policy gradient using the advantage
function

Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

We subtract a baseline function B(s) from the policy gradient
This can reduce variance, without changing expectation

E⇡✓ [r✓ log ⇡✓(s, a)B(s)] =
X

s2S
d⇡✓(s)

X

a

r✓⇡✓(s, a)B(s)

=
X

s2S
d⇡✓B(s)r✓

X

a2A
⇡✓(s, a)

= 0

A good baseline is the state value function B(s) = V ⇡✓(s)
So we can rewrite the policy gradient using the advantage
function A⇡✓(s, a)

A⇡✓(s, a) = Q⇡✓(s, a) � V ⇡✓(s)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a) A
⇡✓(s, a)]

Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

We subtract a baseline function B(s) from the policy gradient
This can reduce variance, without changing expectation

E⇡✓ [r✓ log ⇡✓(s, a)B(s)] =
X

s2S
d⇡✓(s)

X

a

r✓⇡✓(s, a)B(s)

=
X

s2S
d⇡✓B(s)r✓

X

a2A
⇡✓(s, a)

= 0

A good baseline is the state value function B(s) = V ⇡✓(s)
So we can rewrite the policy gradient using the advantage
function A⇡✓(s, a)

A⇡✓(s, a) = Q⇡✓(s, a) � V ⇡✓(s)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a) A
⇡✓(s, a)]

Model-Based and Model-Free RL
Model-Free RL
q No model
q Learn value function (and/or policy) from experience

Model-Based RL
q Learn a model from experience
q Plan value function (and/or policy) from model

Lecture 8: Integrating Learning and Planning

Introduction

Model-Free RL

state

reward

action

At

Rt

St

Lecture 8: Integrating Learning and Planning

Introduction

Model-Based RL

state

reward

action

At

Rt

St

Advantages of Model-Based RL
Advantages:
q Can efficiently learn model by supervised learning methods
q Can reason about model uncertainty

Disadvantages:
q First learn a model, then construct a value function

Model Learning
Goal: estimate model Mη from experience {S1, A1, R2, ..., ST }
This is a supervised learning problem

Learning s,a → r is a regression problem
Learning s,a → sʹ is a density estimation problem
Pick loss function, e.g. mean-squared error, KL divergence, ...

Lecture 8: Integrating Learning and Planning

Model-Based Reinforcement Learning

Learning a Model

Model Learning

Goal: estimate model M⌘ from experience {S1,A1,R2, ..., ST}
This is a supervised learning problem

S1,A1 ! R2, S2

S2,A2 ! R3, S3
...

ST�1,AT�1 ! RT , ST

Learning s, a ! r is a regression problem

Learning s, a ! s 0 is a density estimation problem

Pick loss function, e.g. mean-squared error, KL divergence, ...

Find parameters ⌘ that minimise empirical loss

Examples of Models
Table Lookup Model
Linear Expectation Model
Linear Gaussian Model
Gaussian Process Model
Deep Belief Network Model
……

Exploration vs. Exploitation Dilemma
Online decision-making involves a fundamental choice:
q Exploitation: Make the best decision given current information
q Exploration: Gather more information

The best long-term strategy may involve short-term
sacrifices

Gather enough information to make the best overall decisions

Examples
Restaurant Selection
q Exploitation: Go to your favourite restaurant
q Exploration: Try a new restaurant
Online Banner Advertisements
q Exploitation Show the most successful advert
q Exploration Show a different advert
Oil Drilling
q Exploitation Drill at the best known location
q Exploration Drill at a new location
Game Playing
q Exploitation Play the move you believe is best
q Exploration Play an experimental move

Exploration methods
exploration only policy: try every action in turn
q waste many trials

exploitation only policy: try each action once, follow the best
action forever
q risk of pick a bad action

balance between exploration and exploitation

Exploration methods
ε-greedy:
q follow the best action with probability 1-ε
q choose action randomly with probability ε
q ε should decrease along time

given a policy

ensure probability of visiting every state > 0

VALSE 2017
�����
 .nju.edu.cn

Action-level exploration

ϵ-greedy policy:
given a policy ⇡

⇡✏(s) =

(
⇡(s),with prob. 1� ✏

randomly chosen action,with prob. ✏

ensure probability of visiting every state > 0

exploration can also be in other levels

Deep Reinforcement Learning
DL is a general-purpose framework for representation
learning
q Given an objective, and learn representation that is required to

achieve objective
q Directly from raw inputs using minimal domain knowledge
Deep Reinforcement Learning: AI = RL + DL
Seek a single agent which can solve any human-level task
q RL defines the objective
q DL gives the mechanism
q RL + DL = general intelligence

Deep Reinforcement Learning
Use deep neural networks to represent
q Value function
q Policy
q Model

Optimize loss function by stochastic gradient descent

Stochastic Gradient Descent with
Experience Replay

Given experience consisting of ⟨state, value⟩ pairs

Repeat:
q Sample state, value from experience

q Apply stochastic gradient descent update

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of hstate, valuei pairs

D = {hs1, v⇡1 i, hs2, v⇡2 i, ..., hsT , v⇡T i}

Repeat:

1 Sample state, value from experience

hs, v⇡i ⇠ D

2 Apply stochastic gradient descent update

�w = ↵(v⇡ � v̂(s,w))rwv̂(s,w)

Converges to least squares solution

w⇡ = argmin
w

LS(w)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of hstate, valuei pairs

D = {hs1, v⇡1 i, hs2, v⇡2 i, ..., hsT , v⇡T i}

Repeat:

1 Sample state, value from experience

hs, v⇡i ⇠ D

2 Apply stochastic gradient descent update

�w = ↵(v⇡ � v̂(s,w))rwv̂(s,w)

Converges to least squares solution

w⇡ = argmin
w

LS(w)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of hstate, valuei pairs

D = {hs1, v⇡1 i, hs2, v⇡2 i, ..., hsT , v⇡T i}

Repeat:

1 Sample state, value from experience

hs, v⇡i ⇠ D

2 Apply stochastic gradient descent update

�w = ↵(v⇡ � v̂(s,w))rwv̂(s,w)

Converges to least squares solution

w⇡ = argmin
w

LS(w)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of hstate, valuei pairs

D = {hs1, v⇡1 i, hs2, v⇡2 i, ..., hsT , v⇡T i}

Repeat:

1 Sample state, value from experience

hs, v⇡i ⇠ D

2 Apply stochastic gradient descent update

�w = ↵(v⇡ � v̂(s,w))rwv̂(s,w)

Converges to least squares solution

w⇡ = argmin
w

LS(w)

Deep Q-Networks (DQN): Experience
Replay

To remove correlations, build data-set from agent’s own
experience

Sample experiences from data-set and apply update

Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

s1, a1, r2, s2
s2, a2, r3, s3 ! s, a, r , s 0

s3, a3, r4, s4
...

st , at , rt+1, st+1 ! st , at , rt+1, st+1

Sample experiences from data-set and apply update

l =

✓
r + � max

a0
Q(s 0, a0,w�) � Q(s, a,w)

◆2

To deal with non-stationarity, target parameters w� are held fixed

Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience

s1, a1, r2, s2
s2, a2, r3, s3 ! s, a, r , s 0

s3, a3, r4, s4
...

st , at , rt+1, st+1 ! st , at , rt+1, st+1

Sample experiences from data-set and apply update

l =

✓
r + � max

a0
Q(s 0, a0,w�) � Q(s, a,w)

◆2

To deal with non-stationarity, target parameters w� are held fixed

Deep Reinforcement Learning in Atari Deep Reinforcement Learning in Atari

state

reward

action

at

rt

st

DQN in Atari
DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games

Deep Policy Networks
Represent policy by deep network with weights u

Define objective function as total discounted reward

Optimize objective end-to-end by SGD

Adjust policy parameters u to achieve more reward

Deep Policy Networks

I Represent policy by deep network with weights u

a = ⇡(a|s,u) or a = ⇡(s,u)

I Define objective function as total discounted reward

L(u) = E
⇥
r1 + �r2 + �2r3 + ... | ⇡(·,u)

⇤

I Optimise objective end-to-end by SGD

I i.e. Adjust policy parameters u to achieve more reward

Deep Policy Networks

I Represent policy by deep network with weights u

a = ⇡(a|s,u) or a = ⇡(s,u)

I Define objective function as total discounted reward

L(u) = E
⇥
r1 + �r2 + �2r3 + ... | ⇡(·,u)

⇤

I Optimise objective end-to-end by SGD

I i.e. Adjust policy parameters u to achieve more reward

Policy Gradients
The gradient of a stochastic policy π(a|s,u) is given by

Policy Gradients

How to make high-value actions more likely:

I The gradient of a stochastic policy ⇡(a|s,u) is given by

@L(u)
@u

= E

@log ⇡(a|s,u)

@u
Q⇡(s, a)

�

I The gradient of a deterministic policy a = ⇡(s) is given by

@L(u)
@u

= E

@Q⇡(s, a)

@a

@a

@u

�

I if a is continuous and Q is di↵erentiable

Similar as Policy Gradient Theorem for RL

Deep Reinforcement Learning in Labyrinth
End-to-end learning of softmax
policy π(a|st) from pixels
Observations ot are raw pixels from
current frame
State is a
recurrent neural network(LSTM)
Outputs both value V(s) and softmax
over actions π(a|s)

A3C in Labyrinth

Deep Reinforcement Learning in LabyrinthDeep Reinforcement Learning in Labyrinth

Deep Reinforcement Learning in Labyrinthst st+1st-1

ot-1 ot ot+1

π(a|st-1) π(a|st) π(a|st+1)V(st-1) V(st) V(st-1)

I End-to-end learning of softmax policy ⇡(a|st) from pixels

I Observations ot are raw pixels from current frame

I State st = f (o1, ..., ot) is a recurrent neural network (LSTM)

I Outputs both value V (s) and softmax over actions ⇡(a|s)
I Task is to collect apples (+1 reward) and escape (+10 reward)

A3C in Labyrinth

Deep Reinforcement Learning in LabyrinthDeep Reinforcement Learning in Labyrinth

Deep Reinforcement Learning in Labyrinthst st+1st-1

ot-1 ot ot+1

π(a|st-1) π(a|st) π(a|st+1)V(st-1) V(st) V(st-1)

I End-to-end learning of softmax policy ⇡(a|st) from pixels

I Observations ot are raw pixels from current frame

I State st = f (o1, ..., ot) is a recurrent neural network (LSTM)

I Outputs both value V (s) and softmax over actions ⇡(a|s)
I Task is to collect apples (+1 reward) and escape (+10 reward)

Model-based RL
Forward search algorithms select the best action by lookahead
They build a search tree with the current state st at the root

Using a model of the MDP to look ahead
No need to solve whole MDP, just sub-MDP starting from now

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Forward Search

Forward search algorithms select the best action by lookahead
They build a search tree with the current state st at the root
Using a model of the MDP to look ahead

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

No need to solve whole MDP, just sub-MDP starting from now

Simulation-Based Search
Forward search paradigm using sample-based planning
Simulate episodes of experience from now with the model
Apply model-free RL to simulated episodes

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Simulation-Based Search

Forward search paradigm using sample-based planning

Simulate episodes of experience from now with the model

Apply model-free RL to simulated episodes

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

Simple Monte-Carlo Search
Given a model Mν and a simulation policy π

For each action a ∈A
q Simulate K episodes from current (real) state st

q Evaluate actions by mean return (Monte-Carlo evaluation)

q Select current (real) action with maximum value

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Simple Monte-Carlo Search

Given a model M⌫ and a simulation policy ⇡

For each action a 2 A
Simulate K episodes from current (real) state st

{st , a,Rk
t+1, S

k
t+1,A

k
t+1, ..., S

k
T}Kk=1 ⇠ M⌫ ,⇡

Evaluate actions by mean return (Monte-Carlo evaluation)

Q(st , a) =
1

K

KX

k=1

Gt
P! q⇡(st , a)

Select current (real) action with maximum value

at = argmax
a2A

Q(st , a)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Simple Monte-Carlo Search

Given a model M⌫ and a simulation policy ⇡

For each action a 2 A
Simulate K episodes from current (real) state st

{st , a,Rk
t+1, S

k
t+1,A

k
t+1, ..., S

k
T}Kk=1 ⇠ M⌫ ,⇡

Evaluate actions by mean return (Monte-Carlo evaluation)

Q(st , a) =
1

K

KX

k=1

Gt
P! q⇡(st , a)

Select current (real) action with maximum value

at = argmax
a2A

Q(st , a)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Simple Monte-Carlo Search

Given a model M⌫ and a simulation policy ⇡

For each action a 2 A
Simulate K episodes from current (real) state st

{st , a,Rk
t+1, S

k
t+1,A

k
t+1, ..., S

k
T}Kk=1 ⇠ M⌫ ,⇡

Evaluate actions by mean return (Monte-Carlo evaluation)

Q(st , a) =
1

K

KX

k=1

Gt
P! q⇡(st , a)

Select current (real) action with maximum value

at = argmax
a2A

Q(st , a)

Monte-Carlo Tree Search (Evaluation)
Given a model Mν

Simulate K episodes from current state st using current
simulation policy π

Build a search tree containing visited states and actions
Evaluate states Q(s, a) by mean return of episodes from s, a

After search is finished, select current (real) action with
maximum value in search tree

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Monte-Carlo Tree Search (Evaluation)

Given a model M⌫

Simulate K episodes from current state st using current
simulation policy ⇡

{st ,Ak
t ,R

k
t+1, S

k
t+1, ..., S

k
T}Kk=1 ⇠ M⌫ ,⇡

Build a search tree containing visited states and actions
Evaluate states Q(s, a) by mean return of episodes from s, a

Q(s, a) =
1

N(s, a)

KX

k=1

TX

u=t

1(Su,Au = s, a)Gu
P! q⇡(s, a)

After search is finished, select current (real) action with
maximum value in search tree

at = argmax
a2A

Q(st , a)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Monte-Carlo Tree Search (Evaluation)

Given a model M⌫

Simulate K episodes from current state st using current
simulation policy ⇡

{st ,Ak
t ,R

k
t+1, S

k
t+1, ..., S

k
T}Kk=1 ⇠ M⌫ ,⇡

Build a search tree containing visited states and actions
Evaluate states Q(s, a) by mean return of episodes from s, a

Q(s, a) =
1

N(s, a)

KX

k=1

TX

u=t

1(Su,Au = s, a)Gu
P! q⇡(s, a)

After search is finished, select current (real) action with
maximum value in search tree

at = argmax
a2A

Q(st , a)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Monte-Carlo Search

Monte-Carlo Tree Search (Evaluation)

Given a model M⌫

Simulate K episodes from current state st using current
simulation policy ⇡

{st ,Ak
t ,R

k
t+1, S

k
t+1, ..., S

k
T}Kk=1 ⇠ M⌫ ,⇡

Build a search tree containing visited states and actions
Evaluate states Q(s, a) by mean return of episodes from s, a

Q(s, a) =
1

N(s, a)

KX

k=1

TX

u=t

1(Su,Au = s, a)Gu
P! q⇡(s, a)

After search is finished, select current (real) action with
maximum value in search tree

at = argmax
a2A

Q(st , a)

Monte-Carlo Tree Search (Simulation)
In MCTS, the simulation policy π improves
Each simulation consists of two phases (in-tree, out-of-tree)
q Tree policy (improves): pick actions to maximize Q(S,A)
q Default policy (fixed): pick actions randomly

Repeat (each simulation)
q Evaluate states Q(S,A) by Monte-Carlo evaluation
q Improve tree policy, e.g. by ε − greedy(Q)

Monte-Carlo control applied to simulated experience

Converges on the optimal search tree, Q(S,A) → q∗(S,A)

Case Study: the Game of Go
How good is a position s?
Reward function (undiscounted):

Policy π = ⟨πB , πW ⟩ selects moves for both players
Value function (how good is position s):

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Case Study: the Game of Go

The ancient oriental game of
Go is 2500 years old

Considered to be the hardest
classic board game

Considered a grand
challenge task for AI
(John McCarthy)

Traditional game-tree search
has failed in Go

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Position Evaluation in Go

How good is a position s?

Reward function (undiscounted):

Rt = 0 for all non-terminal steps t < T

RT =

⇢
1 if Black wins
0 if White wins

Policy ⇡ = h⇡B ,⇡W i selects moves for both players

Value function (how good is position s):

v⇡(s) = E⇡ [RT | S = s] = P [Black wins | S = s]

v⇤(s) = max
⇡B

min
⇡W

v⇡(s)

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Position Evaluation in Go

How good is a position s?

Reward function (undiscounted):

Rt = 0 for all non-terminal steps t < T

RT =

⇢
1 if Black wins
0 if White wins

Policy ⇡ = h⇡B ,⇡W i selects moves for both players

Value function (how good is position s):

v⇡(s) = E⇡ [RT | S = s] = P [Black wins | S = s]

v⇤(s) = max
⇡B

min
⇡W

v⇡(s)

Monte-Carlo Evaluation in Go
Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Monte-Carlo Evaluation in Go

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Applying Monte-Carlo Tree Search (5)

AlphaGo paper: www.nature.com/articles/nature16961

AlphaStar

A visualisation of the AlphaStar agent during game two of the
match against MaNa.

AlphaStar – Challenges on StartCraft
Game theory
q StarCraft is a game where, just like rock-paper-scissors, there is no

single best strategy
Imperfect information
q crucial information is hidden from a StarCraft player and must be

actively discovered by “scouting”.
Long term planning
q Like many real-world problems cause-and-effect is not instantaneous.
Real time
q StarCraft players must perform actions continually as the game clock

progresses
Large action space
q Hundreds of different units and buildings must be controlled at once,

in real-time, resulting in a combinatorial space of possibilities

Summary
Key concepts:
q Markov Decision Process
q Value-based methods
q Policy gradient
q Deep reinforcement learning
What’s more
q POMDP
q Exploration and Exploition
q A3C
q HRL
q On policy and off policy
q ……

Questions?

