[80245013 Machine Learning, Fall, 2019]

Probabilistic Methods for Classification

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://ml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems

Tsinghua University

September 24, 2019

Outline

Probabilistic methods for supervised learning
Naive Bayes classifier

Logistic regression

Exponential family distributions

Generalized linear models

An Intuitive Example

Katydids

1 2 3 4 5 6 7 8 910
Abdomen Length

[Courtesy of E. Keogh] /

With more data ...

Build a histogram, e.g., for “Antenna length”

—
=

Antenna Length

—_— P W B th N 1 00 WO

< ™

N NN

‘
Ry B

N

1 2 3 4 5 6 7 8 9 10

Katydids
® Grasshoppers

[Courtesy of E. Keogh] /

Empirical distribution

@ Histogram (or empirical distribution)

Smooth with kernel density estimation (KDE):

[Courtesy of E. Keogh] /

Classification?

& Classify another insect we find. Its antennae are 3 units long

Is it more probable that the insect is a Grasshopper or a
Katydid?

Antennae length 1s 3

[Courtesy of E. Keogh] /

Classification Probability

P(Grasshopper | 3)=10/(10 + 2) = 0.833
P(Katydid | 3) =2/(10 + 2) =0.166

[Courtesy of E. Keogh] /

Classification Probability

P(Grasshopper |7)=3/(3 +9) =0.250
P(Katydid | 7) =9/(3+9) =0.750

7N

Antennae length is 7 D=

[Courtesy of E. Keogh] /

Classification Probability

P(Grasshopper |5)=6/(6 + 6) = 0.500
P(Katydid | 5) =6/(6+06) = 0.500
66

Antennae length 1s §

[Courtesy of E. Keogh] /

Na'we Bayes Classifier

The simplest “Category—feature” generative model:

Legs

o Category: “bird”, “Mammal”

o Features: “has beak”, “can fly” ...

.

Na'we Bayes Classifier

A mathematic model:

o Naive Bayes assumption: features X1,...,X4 are

conditionally independent given the class label Y

{bird, mammal}

has beak? can fly? has fur? has four legs?

A joint distribution: prior likelihood
/

p(x,) = p(y)p(x]y)

Na'we Bayes Classifier

A mathematic model:

{bird, mammal}

has beak? can fly? has fur? has four legs?

Inference via Bayes rule:

p(y|x)

Bayes’ decision rule:

y" = arg r;léaagcp(y\X)

Bayes Error

Theorem: Bayes classifier is optimal!

s

S Ny
|—

[ply=1]x) if we decide y =0
plerrorfx) = { p(y = 0|x) if we decide y =1

p(error) = /OO p(error|x)p(x)dx

@& However, the true distribution is unknown.

& Leamin(q./

o We need to estimate it!

Na'we Bayes Classifier

How to learn model parameters?

o Assume X are d binary features, Y has 2 possible labels

{bird, mammal}

if y=1 (z.e., bird
p(y|T) :{ | .)

1 —m7 otherwise

has beak? can fly? has fur? has four legs?

: ifx:, =1
p(zjly =0,q) = { 103 ’

1 —qp; otherwise plzily=1,q) = {

1 —qi; otherwise

o How many parameters to estimate’

- /

Na'we Bayes Classifier

How to learn model parameters?
A set of training data:

0 (1,1,0,0; 1)

2 (1,0,0,0; 1)

1 (0,1, 1,0;0)

5 (0,0,1,1;0)

Maximum likelihood estimation (N: # of training data)

N
p({xi,yilm,q}) = | [p(xi, vilm, q)
1=1

Na'we Bayes Classifier

Maximum likelihood estimation (N: # of training data)

(7,q) = arg n;lragxp({xi, yi Hm, q)

(7r,q) = arg max log p({x:, i }|7, q)

Results (Count frequency! Exercise?):

N J N/
=11 No 5 1

N doj = N, q15; = N

A

N
Ny = ZI(yZ = k) : # of data in category k
i=1

N
N,‘z = Zl(yi =k, x;; =1): # of data in category k that has feature j /

Na'we Bayes Classifier

Data scarcity issue (zero-counts problem):

A

M N M
N QOJ—FO qlJ—Nl

o How about ifsomefeatures do not appear?

Laplace smoothing (Additive smoothing):

. N3+Oz
qo]—No—i—QOé
a >0
) Nf—{—oz
q1; —

N1+205

A Bayesian Treatment

Put a prior on the parameters

[(ar +@2) o)1

Flan)T(ag) 0 (1 @)™

po(qojla1, aa) = Beta(ag, ag) =

351

251

15F

AN

A Bayesian Treatment

Maximum a Posterior Estimate (MAP):
¢ = argmaxlog p(q|{xi, yi})

— arg mgmx log po(q) + log p({xi, yi }|q)

Results (Exercise?):

L Ng+051—1
qu—NQ—FOél—l—OéQ—Z
~ N‘lj-{—Oél—].
q1j

:N1—|—Oél—|—052—2

A Bayesian Treatment

Maximum a Posterior Estimate (MAP):

qdo; —

Ng+041—1
N0+051+042—2

@It ax =a2 =1 (non-informative prior), no ettect

o MLE is a special case of Bayesian estimate

Increase a1, a2 | lead to heavier influence from prior

351

3k

25+

o =1.0, o,=0.
o, =1.0, o, =1.
a.=1.0 o =5
o, =1.0, o=
o, =9.0, o=

Bayesian Regression

ar
181
1t -

[LE] 2
= Or L

-0.5 .

-1 L

. f: X =Y

-1.5

o 1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 i} 0.5 1 1.5

Goal: learn a function from noisy observed data

o Linear ‘Flz’neafr — {f : f = WT + b7 w, b e R}

a ...

k
o Polynomial fpolynomial - {f : f - Zwkaz s, WE € R}
. k

Bayesian Regression
Noisy observations

y = f(x) + €, where e ~ N(0, 07%)

. R . . . T
Gaussian likelihood function for linear regression f(xi) =w x;

(y| X, w) = Hp yi|xi, w) = N(X "w,021)

Gaussian prior (Conjugate)
W ~ N (0, Zd)

Inference with Bayes’ rule

- 1
o Posterior p(W|X,y) :N(EA—le’A—l), where A = UE2XXT _I_Egl

Q Marginal likelihood
o Prediction p(y|X) = /p(y[X, w)p(w)dw

1
U Xey) = [0 w vl Xy)i = A7 (oxT Ay x4,)

Extensions of NB

We covered the case with binary features and binary class

labels

NB is applicable to the cases:
o Discrete features + discrete class labels
o Continuous features + discrete class labels

D e o o

More dependency between features can be considered
o Tree augmented NB

D e o o

Gaussian Naive Bayes (GNB)

E.g.: character recognition: feature X is intensity at pixel i:

The generative process 1S

Y ~ Bernoulli(r)
P(Xi[Y = y) = N(py, o7,

o Different mean and variance for each class k and each feature i

Sometimes assume variance is: @
a independent of Y (i.e., 0;)
a or independent of X (i.e., 0y)

a or both (i.e., 0) @ @

Estimating Parameters & Prediction
MLE estimates

1

pixel iin

training image n

7= s 2w =)L =)

Prediction:

n

h(x) = argmaXP HP (xi|y)

What you need to know about NB classifier

What’s the assumption
& Why we use it
How do we learn it

Why is Bayesian estimation (MAP) important

Linear regression and linear classification

Linear fit

Linear decision boundary

What’s the decision boundary of NB?

Is it linear or non-linear?

There are several distributions that lead to a linear decision

boundary, e.g., GNB with equal variance
P(X;|Y =y) = N(u’iyaaz?)

a Decision boundary (77):

[, POXIY =0)P(Y =0)
[[L, POGIY = DP(Y = 1)

l—m Mgl _Mgo Hio — Ha1
= log - +Z@:T‘-%2+Z%: 0'1-2 x; =10

0
lo
5 1

= w0+2wi$i:()

Gaussian Naive Bayes (GNB)

Decision boundary (the general multivariate Gaussian case):

X { — —3- X 4

Pi=P(Y =0), P,=P(Y =1)
pi(X) = p(X|Y =0) = N (M, 3)

p2(X) = p(X|Y = 1) = N (M3, X)

The predictive distribution of GNB

& Understanding the predictive distribution

ply = 1,x|p, 2, m)
p(x|p, X,)

p(y:]‘|X7M7E7ﬂ-) —

Under naive Bayes assumption:

1

=0,x|pu,2,7)
1 p(y 3 34y
l p(y=1,x|p,,2,ﬂ')

1

- L, N (@)
L+ = Mo

1

1+ exp(—w'x — wy)

p(y:]‘|X§M7297T) —

Note: For multi-class, the predictive distribution is softmax!

-

Generative vs. Discriminative Classifiers

Generative classifiers (e.g., Naive Bayes)
a Assume some functional form for P(X,Y) (or P(Y) and P(X|Y))
o Estimate parameters of P(X,Y) directly from training data

o Make prediction
y = argmax P(x,Y = y)
o But, we note that Y
y = argmax P(Y = y|x)
Y

@ Why not learn P(Y | X) directly? Or, why not learn the decision

boundary directly?
Discriminative classifiers (e.g., Logistic regression)
a Assume some functional form for P(Y | X)

o Estimate parameters of P(Y | X) directly from training data

Logistic Regression
Recall the predictive distribution of GNB!

Assume the following functional form for P(Y | X)
Py =1]x) =

1 + exp(—(wo + w'x))

0 Logistic function (or Sigmoid) applied to a linear function of the

data (for @ = 1): 1.2 |
4

1k

1 08 F o) W]

w()é (U) - 1 s eXp(_Oé/U) Ei : % Increzsing :
02}

a — o0 : step function 0 - :
10 8 6 4 2 0 2 4 6 & 10

K

use a large v can be good for some neural networks

/

Logistic Regression

What's the decision boundary of logistic regression? (linear

or nonlinear?)

1
P J— 1 p—
(y = 1) 1 + exp(—(wy + W 'x))
w' X+ woy = 0
Py =1
log (x) _
P(y = 0]x)

Logistic regression 1s a linear classifier!

-

Representation
& Logistic regression

1
1 + exp(—(wg + W 'x))

For notation simplicity, we use the augmented vector:

Py =1]x) =

input features : (:) model weights : (o)

X W

a Then, we have

1
1 + exp(—w'x)

Py = 1]x) =

Multiclass Logistic Regression

For more than 2 classes, where ¥ € {1,..., K}, logistic

regression classifier is defined as

Vk < K: P(Y =k[x)=

P(Y = K|x) =

1+ Zj{:_ll exp(w X)

o Well normalized distribution! No Weights for class K!

Is the decision boundary still linear?

Training Logistic Regression

We consider the binary classification

1

Ply=1|x) =
= 1) 1 + exp(—w'x)

& Training data D = {(x;, y;) N

How to learn the parameters?

Can we do MLE? N

Wiyrp = argmaxH P(x;,y;|w)

o=l
a No! Don’t have a model for P(X) or P(X|Y)

Can we do large—margin learning?

Maximum Conditional Likelihood Estimate

We learn the parameters by solving

N
W = argmaXH P(y;|x;, W)
Yo =1

Discriminative philosophy — don’t waste effort on
learning P(X), focus on P(Y | X)) — that’s all that matters for

classification!

Maximum Conditional Likelihood Estimate

N
W = argmaXH P(y;|x;, w)
R
1

P pu— 1 p—
= 1) 1 4 exp(—w'x)

We have: N
L(w) = logH P(yi|x;, w)

1=1

= > [yw i — log(1 + exp(w)]

™~

4 N

Maximum Conditional Likelihood Estimate

w = argmax L(w)

L(w) = Z [insz- — log(1 + eXp(WTXZ'))]
Bad news: no closed-form solution!

#® Good news: £(W) is a concave function of w!

o Is the original logistic function concave?

k Read [S. Boyd, Convex Optimization, Chap. 1] for an introduction to convex optimization. /

Optimizing concave/convex function

Conditional likelihood for logistic regression is concave

Maximum of a concave function = minimum of a convex

function

o Gradient ascent (concave) / Gradient descent (convex)

Gradient:
oL(w)
owy
S _
SR Vwl(w) = :
N WY
Aanars OL(W)
— s =
= —————— —
= 2 Update rule:
E———————
2
.1 —
W e Wy Wil = Wi + NV L(W)]|w,

- /

Gradient Ascent for Logistic Regression

4 Property of sigmoid function

B .-

QGradient ascent algorithm iteratively does:

N
Wiyl < Wi + UZXZ- (y@- — uf)
1=1
o0 where LL§ =P (y =1 |Xz'7 Wt) is the prediction made by the

current model

4 Until the change (of objective or gradient) falls below some
threshold

Issues

Gradient descent is the simplest optimization methods, faster

convergence can be obtained by using

o E.g., Newton method, conjugate gradient ascent, IRLS

(iterative reweighted least squares)

The vanilla logistic regression often over-fits; using a

regularization can help a lot!

Effects of step-size

Large 77 => fast convergence but larger residual error; Also
possible oscillations

Small 7 => slow convergence but small residual error

The Newton’s Method

AKA: Newton-Raphson method
A method that finds the root of: f(x) =0

f ()
f'(x)

Tiy1 = T —

/

Funktion
Tangente

For Wikipedia

/

The Newton’s Method

To maximize the conditional likelihood

L(w) = Z [inTXi — log(1 + exp(WTxi))]

o We need to find w™ such that
VL(w*) =0
So we can perform the following iteration:
Wil < Wi — H_lvwﬁ(wﬂm
o where H is known as the Hessian matrix:

H = v%\fﬁ(w)lwt

Newton’s Method for LR
The update equation

—1
Wit & wy — H Vwﬁ(w)’wle
o where the gradient is:

Vwl(W)lw, = > (4 — p)xi = X(y — p)

7

Hi = ¢(WtT X;)
o The Hessian matrix is:
H=ViL(W)|w, = Zu@ — w)xx; = —XRX'

where R;; = p;(1 — ;)

Iterative reweighted least squares (IRLS)

In least square estimate of linear regression, we have
w=(XX")"Xy

Now, for logistic regression
Wi =w, — H 'V, L(w,)
=w, — (XRX") "' X(p—y)
= (XRX")""{XRX'w, — X(p—y)}
— (XRX")'XRz

wherez = X'w, — R} (u — y)

Convergence curves

oorv? - - ams:
| 'l
|
noi} ’| 1 oorp |
1 |
| |
e -] S oot |
. '| a
L
Qg | \ 4 000 | lII
Pl | ||.
omr | oo} |
I L ‘ I I-II..-
Dot | ."--._,__ 1 oo '
O — |
— - '\.___ _
9 : : : o : : :
U 5 10 1% F. i | 0 - 10 1% . 0
rec.autos Comp.windows.x
Vs. Vs.
rec.sports.baseball rec.motorcycles

o Legend: X-axis: Iteration #;Y-axis: classification error

a In each figure, red for IRLS and blue for gradient descent

LR: Practical Issues
IRLS takes O(N + d3) per iteration, where N is # training

points and d is feature dimension, but converges in fewer
iterations

Quasi-Newton methods, that approximate the Hessian, work
faster

Conjugate gradient takes O(Nd) per iteration, and usually works

best in practice

Stochastic gradient descent can also be used if N is large c.f.
perceptron rule

Gaussian NB vs. Logistic Regression

GNB LR

VS

Gaussian parameters Regression parameters

Representation equivalence

o But only in some special case! (GNB with class independent

variances)

What’s the differences?

o LR makes no assumption about P(X|Y) in learning

o They optimize different functions, obtain different solutions

Generative vs. Discriminative

Given infinite data (asymptotically)

a (1) If conditional independence assumption holds,

discriminative and generative NB perform similar

€pis, oo ™~ €Gen,00

a (2) If conditional independence assumption does NOT hold,

discriminative outperform generative NB

EDiS,OO < EGen,OO

[Ng & Jordan, NIPS 2001]

Generative vs. Discriminative

Given finite data (N data points, d features)

EDis,n S 6Dis,OO _I_ O (\/g)

log d
EGen,n S EGen,OO _I_ O (=)

N

o Naive Bayes (generative) requires [V = O(logd) to converge
to its asymptotic error, whereas logistic regression
(discriminative) requires N = O(d) :

Why?

o “Independent class conditional densities” — parameter estimates

are not coupled, each parameter is learnt independently, not
jointly, from training data

Experimental Comparison

UCI Machine Learning Repository 15 datasets, 8 continuous

features, 7 discrete features

pirmna |sartinugus) 2wt (continuows) baglon (pradict # = mesdian prica, canlifusus)
05 T T 05 T T 045
d
0.4 %
E IE_I:I':15'
@ o

cpldigits (e and 1's, conlinwous}

0.4 04 05
\i 1
L
D.iﬁi,i o 3.-'=I E 0.4} 1‘.
B =}
™ = (1]
ED I:ID -.'1 3
1
W n
o . ot . 0.2
. —— q 0.1
=] 100 150 20 i =i} 100 150 200 i} 20 40 =3 &0 100
m m T

What you need to know

LR is a linear classifier

a Decision boundary is a hyperplane

LR is learnt by maximizing conditional likelihood
a No closed-form solution

o Concave! Global optimum by gradient ascent methods

GNB with class—independent variances representationally
equivalent to LR

a Solutions differ because of objective (loss) functions
In general, NB and LR make different assumptions
o NB: features independent given class, assumption on P(X|Y)

o LR: functional form of P(Y | X), no assumption on P(X|Y)

Convergence rates:
o GNB (usually) needs less data
o LR (usually) gets to better solutions in the limit

Exponential family

For a numeric random variable X

p(x|n) = h(x)exp (n' T(x) — A(n)) (%)

1 N

= Wh(x) exp (T]TT(X))

is an exponential family distribution with natural (canonical)
parameter 77

Function T(x) is a sufficient statistic.
Function A(7)) = log Z(7) is the log normalizer.

Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma, ...

Recall Linear Regression

Let us assume that the target variable and the inputs are

related by the equation:

yi = 0%+ ¢

where € is an error term of unmodeled effects or random noise

Now assume that € follows a Gaussian N(0,0), then we have:

1 Yi — 6'x;)’
p(yilx;, 0) = N eXp (—(902))

Recall: Logistic Regression (sigmoid
classifier)

The condition distribution: a Bernoulli

p(ylx) = p(x)"(1 — p(x)) ™

where £4is a logistic function

1

11(x)

14 efx

We can use the brute-force gradient method as in LR

But we can also apply generic laws by observing the p(y|x) is an
exponential family function, more specifically, a generalized linear
model!

Example: Multivariate Gaussian
Distribution

For a continuous vector random variable x € R%

Pl) = s e (x-S -)

\Moment param

ter
= (273)(1/2 exp (—%tr(E_lxxT) + 'Y x — %MTE_lu — log EB
4 Exponential family representation Natural parameter
= [Ylu;—%veC(E‘l)] = [m; vec(n,)] nfmf/—%ﬂ‘l
T(x) = [x; vec(xx')]
A(n) = %MTE‘lu +log |X] = —%tr(nzmnf) - %log(—2ln2|)

h(x) = (27) "/

2
a Note: a d-dimensional Gaussian is a (d + d) -parameter distribution with a (d -+ d2)—clcmcnt

vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and

have lower degree of freedom)

/

Example: Multinomial distribution

For a binary vector random variable x ~ multi(x]w) :

p(x|m) = Hﬂ' = exp (Z X; lnm)

d—1 d—1
= exp (Zacilnwi—i— (12%) In (127@))
;:i . 1=1 . 1=1
eXp(Z:{;Zlnlzdl +1n(1Z7T@-))

=1 zllﬂ_Z

& Exponentlal famlly representation

n = [In(m;/mq); 0]

Why exponential family?

Moment generating property (proot?)

VaAm) =VylogZ(n) = = o (xm) T'(x)]

V2A(n) = - = Var[T(x)

Moment estimation

We can easily compute moments of any exponential family

distribution by taking the derivatives of the log normalizer
A(m).

The qth derivative gives the qth centered moment.

VA1) = mean

2 .
Vv, A(n) = variance

Moment vs canonical parameters

4 The moment parameter u can be derived from the natural
(canonical) parameter

VaAn) = By [T(x)] = p

® A(7) is convex since

A: .

V,A(n) = Var|T(x)] > 0 oS

Hence we can invert the relationship and infer the canonical
parameter from the moment parameter (1-to-1):

n = (p)

o A distribution in the exponential family can be parameterixed not only b}' 1) — the canonical
parameterization, but also by ¢ —the moment parameterization.

-

IID Sampling for Exponential Family

4 For exponential family distribution, we can obtain the sufficient
statistics by inspection once represented in the standard form

p(x|n) = h(x)exp(n' T(x) — A(n)

o Sufficient statistics:
T(x)

For IID sampling, the joint distribution is also an exponential

family

p(DIn) = | [h(xi)exp (n"T(x:) — A(n))

— (H h(Xi)) exp (nT Z T(x;) — NA(??))

o Sufficient statistics:
E T(x

MLE for Exponential Family

4 For iid data, the log—likelihood is

Zlogh (xn) (TZTXTL)NA(n)

Take derlvatlves and set to zero:

VaL(n; D ZT (xn) — NV, A(n) =

[IJM LE — N Z T(Xn) Only involve sufficient stiatistics!

mn
This amounts to moment matching.

We can infer the canonical parameters using 73,5 = V(L re)

1

Examples
—vec(X7)

Gaussian: g = [2—1“;_2
T(x) = [x; vec(xx')]
1
A(m) = Sp' 27 p+log 3]
h(X) — 271.)—03/2

Multinomial:
n = [In(m;/74); 0]

T(x) =x .
A(m) =—1In (1 — Zm)
h(x) = i=1

& Poisson: 7 =1logA
T(x)==x
Alm) = =¢"
h(x) = 1

Generalized Linear Models (GLIMs)

The graphical model

o Linear regression
o Discriminative linear classification

o Commonality:
del T
T Eylyl = = f(0 %)
What is p()? the cond. dist. of VY.

What is f()? the response function.

GLIM
a The observed input X is assumed to enter into the model via a linear
Lo . T
combination of its elements f =0 X

o The conditional mean //is represented as a function f(&) of & where fis
known as the response function

o The observed output Y is assumed to be characterized by an exponential
family distribution with conditional mean /1.

GLIM, cont. EXP

67\\\\‘ f ///;;//—\\;;;;\\

p— =2y
X /5
p(y|7) =h(y)expin" ()y - A@)]
= p(y|7,6)=h(y,9)exp (7")y —Aw));

The choice of exp family is constrained by the nature of the data Y

a Example: y is a continuous vector = multivariate Gaussian

yisa class label = Bernoulli or multinomial
The choice of the response function
o Following some mild constrains, e.g., [0,1]. Positivity ...
o Canonical response function:

In this case @' X directly corresponds to canonical parameter 7;.

f=y"()

MLE for GLIMSs
& Log—likelihood

_ Z log h(yn) + Z (MY — A1)

where 1, = (), fn = (&) and & = 87x,
Derivative of Log—likelihood

dA(n,

dny,

- Z = 1) Vo This is a fixed point function
because u is a function of ¢

MLE for GLIMs with canonical response

& Log likelihood
Z log h yn + Z Xnyn T nn))

Derivative of Log- hkehhood
dA(n,
Vg[.‘, — Z (Xnyn — (77)VOT]n)

dny,
— Z(yn -
" This is a fixed point function
= X(y — p) because u is a function of 6

Online learning for canonical GLIMs

o Stochastic gradient ascent = least mean squares (LMS)

algorithm:
5 01 =0+ p(yn — M;)Xn

where ! = f(0,x,) and p is a step size

MLE for GLIMs with canonical response

& Log likelihood
Z log h yn + Z Xnyn o nn))

Derivative of Log- hkehhood
dA(n,
Vg[.‘, — Z (Xnyn — (77)VOT]n)

dny,
— Z(yn -
" This is a fixed point function
= X(y — p) because u is a function of 6

Batch learning applies

a E.g., the Newton’s method leads to an Iteratively Reweighted
Least Square (IRLS) algorithm

What you need to know

Exponential family distribution
Moment estimation
Generalized linear models

Parameter estimation of GLIMs

