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Outline

# Probabilistic methods for supervised learning
# Naive Bayes classifier

# Logistic regression

# Exponential family distributions

# Generalized linear models




An Intuitive Example

Katydids
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Abdomen Length

[Courtesy of E. Keogh] /




With more data ...

Build a histogram, e.g., for “Antenna length”
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Empirical distribution

@ Histogram (or empirical distribution)

# Smooth with kernel density estimation (KDE):

[Courtesy of E. Keogh] /




Classification?

& Classify another insect we find. Its antennae are 3 units long

# Is it more probable that the insect is a Grasshopper or a
Katydid?

Antennae length 1s 3

[Courtesy of E. Keogh] /




Classification Probability

P(Grasshopper | 3)=10/(10 + 2) = 0.833
P(Katydid | 3 ) =2/(10 + 2) =0.166

[Courtesy of E. Keogh] /




Classification Probability

P(Grasshopper |7 )=3/(3 +9) =0.250
P(Katydid | 7 ) =9/(3+9) =0.750

7N

Antennae length is 7 D=

[Courtesy of E. Keogh] /




Classification Probability

P(Grasshopper |5 )=6/(6 + 6) = 0.500
P(Katydid | 5) =6/(6+06) = 0.500
66

Antennae length 1s §

[Courtesy of E. Keogh] /




Na'we Bayes Classifier

# The simplest “Category—feature” generative model:

Legs

o Category: “bird”, “Mammal”

o Features: “has beak”, “can fly” ...

.




Na'we Bayes Classifier

# A mathematic model:

o Naive Bayes assumption: features X1,...,X4 are

conditionally independent given the class label Y

{bird, mammal}

has beak? can fly? has fur? has four legs?

A joint distribution: prior likelihood
/

p(x,) = p(y)p(x]y)




Na'we Bayes Classifier

A mathematic model:

{bird, mammal}

has beak? can fly? has fur? has four legs?

Inference via Bayes rule:

p(y|x)

Bayes’ decision rule:

y" = arg r;léaagcp(y\X)




Bayes Error

# Theorem: Bayes classifier is optimal!

s

S Ny
|—

[ ply=1]x) if we decide y =0
plerrorfx) = { p(y = 0|x) if we decide y =1

p(error) = /OO p(error|x)p(x)dx




@& However, the true distribution is unknown.

& Leamin(q./

o We need to estimate it!




Na'we Bayes Classifier

# How to learn model parameters?

o Assume X are d binary features, Y has 2 possible labels

{bird, mammal}

if y=1 (z.e., bird
p(y|T) :{ | . )

1 —m7 otherwise

has beak? can fly? has fur? has four legs?

: ifx:, =1
p(zjly =0,q) = { 103 ’

1 —qp; otherwise plzily=1,q) = {

1 —qi; otherwise

o How many parameters to estimate’

- /




Na'we Bayes Classifier

# How to learn model parameters?
# A set of training data:

0 (1,1,0,0; 1)

2 (1,0,0,0; 1)

1 (0,1, 1,0;0)

5 (0,0,1,1;0)

# Maximum likelihood estimation (N: # of training data)

N
p({xi,yilm,q}) = | [ p(xi, vilm, q)
1=1




Na'we Bayes Classifier

# Maximum likelihood estimation (N: # of training data)

(7,q) = arg n;lragxp({xi, yi Hm, q)

(7r,q) = arg max log p({x:, i }|7, q)

# Results (Count frequency! Exercise?):

N J N/
=11 No 5 1

N doj = N, q15; = N

A

N
Ny = ZI(yZ = k) : # of data in category k
i=1

N
N,‘z = Zl(yi =k, x;; =1): # of data in category k that has feature j /




Na'we Bayes Classifier

# Data scarcity issue (zero-counts problem):

A

M N M
N QOJ—FO qlJ—Nl

o How about ifsomefeatures do not appear?

# Laplace smoothing (Additive smoothing):

. N3+Oz
qo]—No—i—QOé
a >0
) Nf—{—oz
q1; —

N1+205




A Bayesian Treatment

# Put a prior on the parameters

[(ar +@2) o)1

Flan)T(ag) 0 (1 @)™

po(qojla1, aa) = Beta(ag, ag) =
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A Bayesian Treatment

# Maximum a Posterior Estimate (MAP):
¢ = argmaxlog p(q|{xi, yi})

— arg mgmx log po(q) + log p({xi, yi }|q)

# Results (Exercise?):

L Ng+051—1
qu—NQ—FOél—l—OéQ—Z
~ N‘lj-{—Oél—].
q1j

:N1—|—Oél—|—052—2




A Bayesian Treatment

# Maximum a Posterior Estimate (MAP):

qdo; —

Ng+041—1
N0+051+042—2

@It ax =a2 =1 (non-informative prior), no ettect

o MLE is a special case of Bayesian estimate

# Increase a1, a2 | lead to heavier influence from prior

351

3k

25+

o =1.0, o,=0.
o, =1.0, o, =1.
a.=1.0 o =5
o, =1.0, o=
o, =9.0, o=




Bayesian Regression
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# Goal: learn a function from noisy observed data

o Linear ‘Flz’neafr — {f : f = WT + b7 w, b e R}

a ...

k
o Polynomial fpolynomial - {f : f - Zwkaz s, WE € R}
. k




Bayesian Regression
# Noisy observations

y = f(x) + €, where e ~ N(0, 07%)

. R . . . T
# Gaussian likelihood function for linear regression f(xi) =w x;

(y| X, w) = Hp yi|xi, w) = N(X "w,021)

# Gaussian prior (Conjugate)
W ~ N (0, Zd)

# Inference with Bayes’ rule

- 1
o Posterior p(W|X,y) :N(EA—le’A—l), where A = UE2XXT _I_Egl

Q Marginal likelihood
o Prediction p(y|X) = /p(y[X, w)p(w)dw

1
U Xey) = [0 w vl Xy )i = A7 (oxT Ay x4, )




Extensions of NB

# We covered the case with binary features and binary class

labels

# NB is applicable to the cases:
o Discrete features + discrete class labels
o Continuous features + discrete class labels

D e o o

# More dependency between features can be considered
o Tree augmented NB

D e o o




Gaussian Naive Bayes (GNB)

# E.g.: character recognition: feature X is intensity at pixel i:

# The generative process 1S

Y ~ Bernoulli(r)
P(Xi[Y = y) = N(py, o7,

o Different mean and variance for each class k and each feature i

# Sometimes assume variance is: @
a independent of Y (i.e., 0; )
a or independent of X (i.e., 0y)

a or both (i.e., 0) @ @




Estimating Parameters & Prediction
# MLE estimates

1

pixel iin

training image n

7= s 2w = )L = )

# Prediction:

n

h(x) = argmaXP HP (xi|y)




What you need to know about NB classifier

# What’s the assumption
& Why we use it
# How do we learn it

# Why is Bayesian estimation (MAP) important




Linear regression and linear classification

Linear fit

Linear decision boundary




What’s the decision boundary of NB?

# Is it linear or non-linear?

# There are several distributions that lead to a linear decision

boundary, e.g., GNB with equal variance
P(X;|Y =y) = N(u’iyaaz?)

a Decision boundary (77):

[, POXIY =0)P(Y =0)
[[L, POGIY = DP(Y = 1)

l—m Mgl _Mgo Hio — Ha1
= log - +Z@:T‘-%2+Z%: 0'1-2 x; =10

0
lo
5 1

= w0+2wi$i:()




Gaussian Naive Bayes (GNB)

# Decision boundary (the general multivariate Gaussian case):

X { — —3- X 4

Pi=P(Y =0), P,=P(Y =1)
pi(X) = p(X|Y =0) = N (M, 3)

p2(X) = p(X|Y = 1) = N (M3, X)




The predictive distribution of GNB

& Understanding the predictive distribution

ply = 1,x|p, 2, m)
p(x|p, X, )

p(y: ]‘|X7M7E7ﬂ-) —

# Under naive Bayes assumption:

1

=0,x|pu,2,7)
1 p(y 3 34y
_l_ p(y=1,x|p,,2,ﬂ')

1

- L, N (@)
L+ = Mo

1

1+ exp(—w'x — wy)

p(y: ]‘|X§M7297T) —

# Note: For multi-class, the predictive distribution is softmax!




-

Generative vs. Discriminative Classifiers

# Generative classifiers (e.g., Naive Bayes)
a Assume some functional form for P(X,Y) (or P(Y) and P(X|Y))
o Estimate parameters of P(X,Y) directly from training data

o Make prediction
y = argmax P(x,Y = y)
o But, we note that Y
y = argmax P(Y = y|x)
Y

@ Why not learn P(Y | X) directly? Or, why not learn the decision

boundary directly?
# Discriminative classifiers (e.g., Logistic regression)
a Assume some functional form for P(Y | X)

o Estimate parameters of P(Y | X) directly from training data




Logistic Regression
# Recall the predictive distribution of GNB!

# Assume the following functional form for P(Y | X)
Py =1]x) =

1 + exp(—(wo + w'x))

0 Logistic function (or Sigmoid) applied to a linear function of the

data (for @ = 1): 1.2 |
4

1k

1 08 F o) W ]

w()é (U) - 1 s eXp(_Oé/U) Ei : % Increzsing :
02}

a — o0 : step function 0 - :
10 8 6 4 2 0 2 4 6 & 10

K

use a large v can be good for some neural networks

/




Logistic Regression

# What's the decision boundary of logistic regression? (linear

or nonlinear?)

1
P J— 1 p—
(y = 1) 1 + exp(—(wy + W 'x))
w' X+ woy = 0
Py =1
log ( x) _
P(y = 0]x)

Logistic regression 1s a linear classifier!

-




Representation
& Logistic regression

1
1 + exp(—(wg + W 'x))

# For notation simplicity, we use the augmented vector:

Py =1]x) =

input features : ( : ) model weights : ( o )

X W

a Then, we have

1
1 + exp(—w'x)

Py = 1]x) =




Multiclass Logistic Regression

# For more than 2 classes, where ¥ € {1,..., K}, logistic

regression classifier is defined as

Vk < K: P(Y =k[x)=

P(Y = K|x) =

1+ Zj{:_ll exp(w X)

o Well normalized distribution! No Weights for class K!

# Is the decision boundary still linear?




Training Logistic Regression

# We consider the binary classification

1

Ply=1|x) =
= 1) 1 + exp(—w'x)

& Training data D = {(x;, y;) N

# How to learn the parameters?

# Can we do MLE? N

Wiyrp = argmaxH P(x;,y;|w)

o=l
a No! Don’t have a model for P(X) or P(X|Y)

# Can we do large—margin learning?




Maximum Conditional Likelihood Estimate

We learn the parameters by solving

N
W = argmaXH P(y;|x;, W)
Yo =1

Discriminative philosophy — don’t waste effort on
learning P(X), focus on P(Y | X)) — that’s all that matters for

classification!




Maximum Conditional Likelihood Estimate

N
W = argmaXH P(y;|x;, w)
R
1

P pu— 1 p—
= 1) 1 4 exp(—w'x)

# We have: N
L(w) = logH P(yi|x;, w)

1=1

= > [yw i — log(1 + exp(w )]

™~




4 N

Maximum Conditional Likelihood Estimate

w = argmax L(w)

L(w) = Z [insz- — log(1 + eXp(WTXZ'))]
# Bad news: no closed-form solution!

#® Good news: £(W) is a concave function of w!

o Is the original logistic function concave?

k Read [S. Boyd, Convex Optimization, Chap. 1] for an introduction to convex optimization. /




Optimizing concave/convex function

# Conditional likelihood for logistic regression is concave

# Maximum of a concave function = minimum of a convex

function

o Gradient ascent (concave) / Gradient descent (convex)

Gradient:
oL(w)
owy
S _
SR Vwl(w) = :
N WY
Aanars OL(W)
— s =
= —————— —
= 2 Update rule:
E———————
2
.1 —
W e Wy Wil = Wi + NV L(W)]|w,

- /




Gradient Ascent for Logistic Regression

4 Property of sigmoid function

B .-

# QGradient ascent algorithm iteratively does:

N
Wiyl < Wi + UZXZ- (y@- — uf)
1=1
o0 where LL§ =P (y =1 |Xz'7 Wt) is the prediction made by the

current model

4 Until the change (of objective or gradient) falls below some
threshold




Issues

# Gradient descent is the simplest optimization methods, faster

convergence can be obtained by using

o E.g., Newton method, conjugate gradient ascent, IRLS

(iterative reweighted least squares)

# The vanilla logistic regression often over-fits; using a

regularization can help a lot!




Effects of step-size

# Large 77 => fast convergence but larger residual error; Also
possible oscillations

# Small 7 => slow convergence but small residual error




The Newton’s Method

# AKA: Newton-Raphson method
# A method that finds the root of:  f(x) =0

f ()
f'(x)

Tiy1 = T —

/

Funktion
Tangente

For Wikipedia

/




The Newton’s Method

# To maximize the conditional likelihood

L(w) = Z [inTXi — log(1 + exp(WTxi))]

o We need to find w™ such that
VL(w*) =0
# So we can perform the following iteration:
Wil < Wi — H_lvwﬁ(wﬂm
o where H is known as the Hessian matrix:

H = v%\fﬁ(w)lwt




Newton’s Method for LR
# The update equation

—1
Wit & wy — H Vwﬁ(w)’wle
o where the gradient is:

Vwl(W)lw, = > (4 — p)xi = X(y — p)

7

Hi = ¢(WtT X;)
o The Hessian matrix is:
H=ViL(W)|w, = Zu@ — w)xx; = —XRX'

where R;; = p;(1 — ;)




Iterative reweighted least squares (IRLS)

In least square estimate of linear regression, we have
w=(XX")"Xy

Now, for logistic regression
Wi =w, — H 'V, L(w,)
=w, — (XRX") "' X(p—y)
= (XRX")""{XRX'w, — X(p—y)}
— (XRX")'XRz

wherez = X'w, — R} (u — y)




Convergence curves
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o Legend: X-axis: Iteration #;Y-axis: classification error

a In each figure, red for IRLS and blue for gradient descent




LR: Practical Issues
# IRLS takes O( N + d3) per iteration, where N is # training

points and d is feature dimension, but converges in fewer
iterations

# Quasi-Newton methods, that approximate the Hessian, work
faster

# Conjugate gradient takes O(Nd) per iteration, and usually works

best in practice

# Stochastic gradient descent can also be used if N is large c.f.
perceptron rule




Gaussian NB vs. Logistic Regression

GNB LR

VS

Gaussian parameters Regression parameters

Representation equivalence

o But only in some special case! (GNB with class independent

variances)

What’s the differences?

o LR makes no assumption about P(X|Y) in learning

o They optimize different functions, obtain different solutions




Generative vs. Discriminative

# Given infinite data (asymptotically)

a (1) If conditional independence assumption holds,

discriminative and generative NB perform similar

€pis, oo ™~ €Gen,00

a (2) If conditional independence assumption does NOT hold,

discriminative outperform generative NB

EDiS,OO < EGen,OO

[Ng & Jordan, NIPS 2001]




Generative vs. Discriminative

Given finite data (N data points, d features)

EDis,n S 6Dis,OO _I_ O (\/g)

log d
EGen,n S EGen,OO _I_ O ( = )

N

o Naive Bayes (generative) requires [V = O(logd) to converge
to its asymptotic error, whereas logistic regression
(discriminative) requires N = O(d) :

Why?

o “Independent class conditional densities” — parameter estimates

are not coupled, each parameter is learnt independently, not
jointly, from training data




Experimental Comparison

# UCI Machine Learning Repository 15 datasets, 8 continuous

features, 7 discrete features
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What you need to know

LR is a linear classifier

a Decision boundary is a hyperplane

LR is learnt by maximizing conditional likelihood
a No closed-form solution

o Concave! Global optimum by gradient ascent methods

GNB with class—independent variances representationally
equivalent to LR

a Solutions differ because of objective (loss) functions
In general, NB and LR make different assumptions
o NB: features independent given class, assumption on P(X|Y)

o LR: functional form of P(Y | X), no assumption on P(X|Y)

Convergence rates:
o GNB (usually) needs less data
o LR (usually) gets to better solutions in the limit




Exponential family

# For a numeric random variable X

p(x|n) = h(x)exp (n' T(x) — A(n)) (%)

1 N

= Wh(x) exp (T]TT(X))

is an exponential family distribution with natural (canonical)
parameter 77

# Function T(x) is a sufficient statistic.
# Function A(7)) = log Z(7) is the log normalizer.

# Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma, ...




Recall Linear Regression

# Let us assume that the target variable and the inputs are

related by the equation:

yi = 0%+ ¢

where € is an error term of unmodeled effects or random noise

# Now assume that € follows a Gaussian N(0,0), then we have:

1 Yi — 6'x;)’
p(yilx;, 0) = N eXp (—( 902 ) )




Recall: Logistic Regression (sigmoid
classifier)

The condition distribution: a Bernoulli

p(ylx) = p(x)"(1 — p(x)) ™

where £4is a logistic function

1

11(x)

14 efx

We can use the brute-force gradient method as in LR

But we can also apply generic laws by observing the p(y|x) is an
exponential family function, more specifically, a generalized linear
model!




Example: Multivariate Gaussian
Distribution

# For a continuous vector random variable x € R%

Pl ) = s e (x-S - )

\Moment param

ter
= (273)(1/2 exp (—%tr(E_lxxT) + 'Y x — %MTE_lu — log EB
4 Exponential family representation Natural parameter
= [Ylu;—%veC(E‘l)] = [m; vec(n,)] nfmf/—%ﬂ‘l
T(x) = [x; vec(xx')]
A(n) = %MTE‘lu +log |X] = —%tr(nzmnf) - %log(—2ln2|)

h(x) = (27) "/

2
a Note: a d-dimensional Gaussian is a (d + d ) -parameter distribution with a (d -+ d2)—clcmcnt

vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and

have lower degree of freedom)

/




Example: Multinomial distribution

# For a binary vector random variable x ~ multi(x]w) :

p(x|m) = Hﬂ' = exp (Z X; lnm)

d—1 d—1
= exp (Zacilnwi—i— (12%) In (127@))
;:i . 1=1 . 1=1
eXp(Z:{;Zlnlzdl +1n(1Z7T@-))

=1 zllﬂ_Z

& Exponentlal famlly representation

n = [In(m;/mq); 0]




Why exponential family?

Moment generating property (proot?)

VaAm) =VylogZ(n) = = o (xm) T'(x)]

V2A(n) = - = Var[T(x)




Moment estimation

# We can easily compute moments of any exponential family

distribution by taking the derivatives of the log normalizer
A(m).

# The qth derivative gives the qth centered moment.

VA1) = mean

2 .
Vv, A(n) = variance




Moment vs canonical parameters

4 The moment parameter u can be derived from the natural
(canonical) parameter

VaAn) = By [T(x)] = p

® A(7) is convex since

A: .

V,A(n) = Var|T(x)] > 0 oS

# Hence we can invert the relationship and infer the canonical
parameter from the moment parameter (1-to-1):

n = (p)

o A distribution in the exponential family can be parameterixed not only b}' 1) — the canonical
parameterization, but also by ¢ —the moment parameterization.




-

IID Sampling for Exponential Family

4 For exponential family distribution, we can obtain the sufficient
statistics by inspection once represented in the standard form

p(x|n) = h(x)exp(n' T(x) — A(n)

o Sufficient statistics:
T(x)

# For IID sampling, the joint distribution is also an exponential

family

p(DIn) = | [ h(xi)exp (n"T(x:) — A(n))

— (H h(Xi)) exp (nT Z T(x;) — NA(??))

o Sufficient statistics:
E T(x




MLE for Exponential Family

4 For iid data, the log—likelihood is

Zlogh (xn) ( TZTXTL)NA(n)

# Take derlvatlves and set to zero:

VaL(n; D ZT (xn) — NV, A(n) =

[IJM LE — N Z T(Xn) Only involve sufficient stiatistics!

mn
# This amounts to moment matching.

# We can infer the canonical parameters using 73,5 = V(L re)




1

Examples
—vec(X7)

# Gaussian: g = [2—1“;_2
T(x) = [x; vec(xx')]
1
A(m) = Sp' 27 p+log 3]
h(X) — 271.)—03/2

# Multinomial:
n = [In(m;/74); 0]

T(x) =x .
A(m) =—1In (1 — Zm)
h(x) = i=1

& Poisson: 7 =1logA
T(x)==x
Alm) = =¢"
h(x) = 1




Generalized Linear Models (GLIMs)

The graphical model

o Linear regression
o Discriminative linear classification

o Commonality:
del T
T Eylyl = = f(0 %)
What is p()? the cond. dist. of VY.

What is f()? the response function.

GLIM
a The observed input X is assumed to enter into the model via a linear
Lo . T
combination of its elements f =0 X

o The conditional mean //is represented as a function f(&) of & where fis
known as the response function

o The observed output Y is assumed to be characterized by an exponential
family distribution with conditional mean /1.




GLIM, cont. EXP

67\\\\‘ f ///;;//—\\;;;;\\

p— =2y
X /5
p(y|7) =h(y)expin" ()y - A@)]
= p(y|7,6)=h(y,9)exp (7" )y —Aw));

# The choice of exp family is constrained by the nature of the data Y

a Example: y is a continuous vector = multivariate Gaussian

yisa class label = Bernoulli or multinomial
# The choice of the response function
o Following some mild constrains, e.g., [0,1]. Positivity ...
o Canonical response function:

In this case @' X directly corresponds to canonical parameter 7;.

f=y"()




MLE for GLIMSs
& Log—likelihood

_ Z log h(yn) + Z (MY — A1)

where 1, = (), fn = (&) and & = 87x,
# Derivative of Log—likelihood

dA(n,

dny,

- Z = 1) Vo This is a fixed point function
because u is a function of ¢




MLE for GLIMs with canonical response

& Log likelihood
Z log h yn + Z Xnyn T nn))

# Derivative of Log- hkehhood
dA(n,
Vg[.‘, — Z (Xnyn — (77 )VOT]n)

dny,
— Z(yn -
" This is a fixed point function
= X(y — p) because u is a function of 6

# Online learning for canonical GLIMs

o Stochastic gradient ascent = least mean squares (LMS)

algorithm:
5 01 =0+ p(yn — M;)Xn

where ! = f(0,x,) and p is a step size




MLE for GLIMs with canonical response

& Log likelihood
Z log h yn + Z Xnyn o nn))

# Derivative of Log- hkehhood
dA(n,
Vg[.‘, — Z (Xnyn — (77 )VOT]n)

dny,
— Z(yn -
" This is a fixed point function
= X(y — p) because u is a function of 6

# Batch learning applies

a E.g., the Newton’s method leads to an Iteratively Reweighted
Least Square (IRLS) algorithm




What you need to know

Exponential family distribution
Moment estimation
Generalized linear models

Parameter estimation of GLIMs




